| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Missing Authorization vulnerability in designthemes HomeFix Elementor Portfolio homefix-ele-portfolio allows Exploiting Incorrectly Configured Access Control Security Levels.This issue affects HomeFix Elementor Portfolio: from n/a through <= 1.0.1. |
| Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') vulnerability in designthemes DesignThemes Core designthemes-core allows DOM-Based XSS.This issue affects DesignThemes Core: from n/a through <= 1.6. |
| Authorization Bypass Through User-Controlled Key vulnerability in Eagle-Themes Eagle Booking eagle-booking allows Exploiting Incorrectly Configured Access Control Security Levels.This issue affects Eagle Booking: from n/a through <= 1.3.4.3. |
| A vulnerability was identified in gmg137 snap7-rs up to 153d3e8c16decd7271e2a5b2e3da4d6f68589424. Affected by this issue is the function snap7_rs::client::S7Client::download of the file client.rs. Such manipulation leads to heap-based buffer overflow. The attack can be executed remotely. The exploit is publicly available and might be used. This product implements a rolling release for ongoing delivery, which means version information for affected or updated releases is unavailable. The project was informed of the problem early through an issue report but has not responded yet. |
| A vulnerability was determined in aizuda snail-job up to 1.7.0 on macOS. Affected by this vulnerability is the function FurySerializer.deserialize of the component API. This manipulation of the argument argsStr causes deserialization. Remote exploitation of the attack is possible. The exploit has been publicly disclosed and may be utilized. |
| A vulnerability was found in D-Link DCS-850L 1.02.09. Affected is the function uploadfirmware of the component Firmware Update Service. The manipulation of the argument DownloadFile results in path traversal. The attack must originate from the local network. The exploit has been made public and could be used. This vulnerability only affects products that are no longer supported by the maintainer. |
| A vulnerability has been found in PHPEMS up to 11.0. This impacts an unknown function of the component Purchase Request Handler. The manipulation leads to race condition. The attack may be initiated remotely. A high degree of complexity is needed for the attack. The exploitability is said to be difficult. The exploit has been disclosed to the public and may be used. |
| A flaw has been found in code-projects Simple Stock System 1.0. This affects an unknown function of the file /market/login.php. Executing manipulation of the argument Username can lead to sql injection. The attack can be launched remotely. The exploit has been published and may be used. |
| A vulnerability was detected in PHPEMS up to 11.0. The impacted element is an unknown function of the component Coupon Handler. Performing manipulation results in race condition. The attack can be initiated remotely. The complexity of an attack is rather high. The exploitability is regarded as difficult. The exploit is now public and may be used. |
| A security vulnerability has been detected in CloudPanel Community Edition up to 2.5.1. The affected element is an unknown function of the file /admin/users of the component HTTP Header Handler. Such manipulation of the argument Referer leads to open redirect. It is possible to launch the attack remotely. The exploit has been disclosed publicly and may be used. Upgrading to version 2.5.2 is sufficient to fix this issue. Upgrading the affected component is recommended. |
| The Lucky Wheel for WooCommerce – Spin a Sale plugin for WordPress is vulnerable to PHP Code Injection in all versions up to, and including, 1.1.13. This is due to the plugin using eval() to execute user-supplied input from the 'Conditional Tags' setting without proper validation or sanitization. This makes it possible for authenticated attackers, with Administrator-level access and above, to execute arbitrary PHP code on the server. In WordPress multisite installations, this allows Site Administrators to execute arbitrary code, a capability they should not have since plugin/theme file editing is disabled for non-Super Admins in multisite environments. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: sisusbvga: Add endpoint checks
The syzbot fuzzer was able to provoke a WARNING from the sisusbvga driver:
------------[ cut here ]------------
usb 1-1: BOGUS urb xfer, pipe 3 != type 1
WARNING: CPU: 1 PID: 26 at drivers/usb/core/urb.c:504 usb_submit_urb+0xed6/0x1880 drivers/usb/core/urb.c:504
Modules linked in:
CPU: 1 PID: 26 Comm: kworker/1:1 Not tainted 6.2.0-rc5-syzkaller-00199-g5af6ce704936 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/12/2023
Workqueue: usb_hub_wq hub_event
RIP: 0010:usb_submit_urb+0xed6/0x1880 drivers/usb/core/urb.c:504
Code: 7c 24 18 e8 6c 50 80 fb 48 8b 7c 24 18 e8 62 1a 01 ff 41 89 d8 44 89 e1 4c 89 ea 48 89 c6 48 c7 c7 60 b1 fa 8a e8 84 b0 be 03 <0f> 0b e9 58 f8 ff ff e8 3e 50 80 fb 48 81 c5 c0 05 00 00 e9 84 f7
RSP: 0018:ffffc90000a1ed18 EFLAGS: 00010282
RAX: 0000000000000000 RBX: 0000000000000001 RCX: 0000000000000000
RDX: ffff888012783a80 RSI: ffffffff816680ec RDI: fffff52000143d95
RBP: ffff888079020000 R08: 0000000000000005 R09: 0000000000000000
R10: 0000000080000000 R11: 0000000000000000 R12: 0000000000000003
R13: ffff888017d33370 R14: 0000000000000003 R15: ffff888021213600
FS: 0000000000000000(0000) GS:ffff8880b9900000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00005592753a60b0 CR3: 0000000022899000 CR4: 00000000003506e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
sisusb_bulkout_msg drivers/usb/misc/sisusbvga/sisusbvga.c:224 [inline]
sisusb_send_bulk_msg.constprop.0+0x904/0x1230 drivers/usb/misc/sisusbvga/sisusbvga.c:379
sisusb_send_bridge_packet drivers/usb/misc/sisusbvga/sisusbvga.c:567 [inline]
sisusb_do_init_gfxdevice drivers/usb/misc/sisusbvga/sisusbvga.c:2077 [inline]
sisusb_init_gfxdevice+0x87b/0x4000 drivers/usb/misc/sisusbvga/sisusbvga.c:2177
sisusb_probe+0x9cd/0xbe2 drivers/usb/misc/sisusbvga/sisusbvga.c:2869
...
The problem was caused by the fact that the driver does not check
whether the endpoints it uses are actually present and have the
appropriate types. This can be fixed by adding a simple check of
the endpoints. |
| In the Linux kernel, the following vulnerability has been resolved:
tracing: Fix warning in trace_buffered_event_disable()
Warning happened in trace_buffered_event_disable() at
WARN_ON_ONCE(!trace_buffered_event_ref)
Call Trace:
? __warn+0xa5/0x1b0
? trace_buffered_event_disable+0x189/0x1b0
__ftrace_event_enable_disable+0x19e/0x3e0
free_probe_data+0x3b/0xa0
unregister_ftrace_function_probe_func+0x6b8/0x800
event_enable_func+0x2f0/0x3d0
ftrace_process_regex.isra.0+0x12d/0x1b0
ftrace_filter_write+0xe6/0x140
vfs_write+0x1c9/0x6f0
[...]
The cause of the warning is in __ftrace_event_enable_disable(),
trace_buffered_event_enable() was called once while
trace_buffered_event_disable() was called twice.
Reproduction script show as below, for analysis, see the comments:
```
#!/bin/bash
cd /sys/kernel/tracing/
# 1. Register a 'disable_event' command, then:
# 1) SOFT_DISABLED_BIT was set;
# 2) trace_buffered_event_enable() was called first time;
echo 'cmdline_proc_show:disable_event:initcall:initcall_finish' > \
set_ftrace_filter
# 2. Enable the event registered, then:
# 1) SOFT_DISABLED_BIT was cleared;
# 2) trace_buffered_event_disable() was called first time;
echo 1 > events/initcall/initcall_finish/enable
# 3. Try to call into cmdline_proc_show(), then SOFT_DISABLED_BIT was
# set again!!!
cat /proc/cmdline
# 4. Unregister the 'disable_event' command, then:
# 1) SOFT_DISABLED_BIT was cleared again;
# 2) trace_buffered_event_disable() was called second time!!!
echo '!cmdline_proc_show:disable_event:initcall:initcall_finish' > \
set_ftrace_filter
```
To fix it, IIUC, we can change to call trace_buffered_event_enable() at
fist time soft-mode enabled, and call trace_buffered_event_disable() at
last time soft-mode disabled. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_sync: Avoid use-after-free in dbg for hci_remove_adv_monitor()
KASAN reports that there's a use-after-free in
hci_remove_adv_monitor(). Trawling through the disassembly, you can
see that the complaint is from the access in bt_dev_dbg() under the
HCI_ADV_MONITOR_EXT_MSFT case. The problem case happens because
msft_remove_monitor() can end up freeing the monitor
structure. Specifically:
hci_remove_adv_monitor() ->
msft_remove_monitor() ->
msft_remove_monitor_sync() ->
msft_le_cancel_monitor_advertisement_cb() ->
hci_free_adv_monitor()
Let's fix the problem by just stashing the relevant data when it's
still valid. |
| In the Linux kernel, the following vulnerability has been resolved:
block: fix blktrace debugfs entries leakage
Commit 99d055b4fd4b ("block: remove per-disk debugfs files in
blk_unregister_queue") moves blk_trace_shutdown() from
blk_release_queue() to blk_unregister_queue(), this is safe if blktrace
is created through sysfs, however, there is a regression in corner
case.
blktrace can still be enabled after del_gendisk() through ioctl if
the disk is opened before del_gendisk(), and if blktrace is not shutdown
through ioctl before closing the disk, debugfs entries will be leaked.
Fix this problem by shutdown blktrace in disk_release(), this is safe
because blk_trace_remove() is reentrant. |
| In the Linux kernel, the following vulnerability has been resolved:
media: ov5675: Fix memleak in ov5675_init_controls()
There is a kmemleak when testing the media/i2c/ov5675.c with bpf mock
device:
AssertionError: unreferenced object 0xffff888107362160 (size 16):
comm "python3", pid 277, jiffies 4294832798 (age 20.722s)
hex dump (first 16 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<00000000abe7d67c>] __kmalloc_node+0x44/0x1b0
[<000000008a725aac>] kvmalloc_node+0x34/0x180
[<000000009a53cd11>] v4l2_ctrl_handler_init_class+0x11d/0x180
[videodev]
[<0000000055b46db0>] ov5675_probe+0x38b/0x897 [ov5675]
[<00000000153d886c>] i2c_device_probe+0x28d/0x680
[<000000004afb7e8f>] really_probe+0x17c/0x3f0
[<00000000ff2f18e4>] __driver_probe_device+0xe3/0x170
[<000000000a001029>] driver_probe_device+0x49/0x120
[<00000000e39743c7>] __device_attach_driver+0xf7/0x150
[<00000000d32fd070>] bus_for_each_drv+0x114/0x180
[<000000009083ac41>] __device_attach+0x1e5/0x2d0
[<0000000015b4a830>] bus_probe_device+0x126/0x140
[<000000007813deaf>] device_add+0x810/0x1130
[<000000007becb867>] i2c_new_client_device+0x386/0x540
[<000000007f9cf4b4>] of_i2c_register_device+0xf1/0x110
[<00000000ebfdd032>] of_i2c_notify+0xfc/0x1f0
ov5675_init_controls() won't clean all the allocated resources in fail
path, which may causes the memleaks. Add v4l2_ctrl_handler_free() to
prevent memleak. |
| In the Linux kernel, the following vulnerability has been resolved:
HID: uclogic: Correct devm device reference for hidinput input_dev name
Reference the HID device rather than the input device for the devm
allocation of the input_dev name. Referencing the input_dev would lead to a
use-after-free when the input_dev was unregistered and subsequently fires a
uevent that depends on the name. At the point of firing the uevent, the
name would be freed by devres management.
Use devm_kasprintf to simplify the logic for allocating memory and
formatting the input_dev name string. |
| In the Linux kernel, the following vulnerability has been resolved:
pinctrl: stm32: Fix refcount leak in stm32_pctrl_get_irq_domain
of_irq_find_parent() returns a node pointer with refcount incremented,
We should use of_node_put() on it when not needed anymore.
Add missing of_node_put() to avoid refcount leak. |
| In the Linux kernel, the following vulnerability has been resolved:
mmc: sunplus: fix return value check of mmc_add_host()
mmc_add_host() may return error, if we ignore its return value,
1. the memory allocated in mmc_alloc_host() will be leaked
2. null-ptr-deref will happen when calling mmc_remove_host()
in remove function spmmc_drv_remove() because deleting not
added device.
Fix this by checking the return value of mmc_add_host(). Moreover,
I fixed the error handling path of spmmc_drv_probe() to clean up. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix slab-out-of-bounds in init_smb2_rsp_hdr
When smb1 mount fails, KASAN detect slab-out-of-bounds in
init_smb2_rsp_hdr like the following one.
For smb1 negotiate(56bytes) , init_smb2_rsp_hdr() for smb2 is called.
The issue occurs while handling smb1 negotiate as smb2 server operations.
Add smb server operations for smb1 (get_cmd_val, init_rsp_hdr,
allocate_rsp_buf, check_user_session) to handle smb1 negotiate so that
smb2 server operation does not handle it.
[ 411.400423] CIFS: VFS: Use of the less secure dialect vers=1.0 is
not recommended unless required for access to very old servers
[ 411.400452] CIFS: Attempting to mount \\192.168.45.139\homes
[ 411.479312] ksmbd: init_smb2_rsp_hdr : 492
[ 411.479323] ==================================================================
[ 411.479327] BUG: KASAN: slab-out-of-bounds in
init_smb2_rsp_hdr+0x1e2/0x1f4 [ksmbd]
[ 411.479369] Read of size 16 at addr ffff888488ed0734 by task kworker/14:1/199
[ 411.479379] CPU: 14 PID: 199 Comm: kworker/14:1 Tainted: G
OE 6.1.21 #3
[ 411.479386] Hardware name: ASUSTeK COMPUTER INC. Z10PA-D8
Series/Z10PA-D8 Series, BIOS 3801 08/23/2019
[ 411.479390] Workqueue: ksmbd-io handle_ksmbd_work [ksmbd]
[ 411.479425] Call Trace:
[ 411.479428] <TASK>
[ 411.479432] dump_stack_lvl+0x49/0x63
[ 411.479444] print_report+0x171/0x4a8
[ 411.479452] ? kasan_complete_mode_report_info+0x3c/0x200
[ 411.479463] ? init_smb2_rsp_hdr+0x1e2/0x1f4 [ksmbd]
[ 411.479497] kasan_report+0xb4/0x130
[ 411.479503] ? init_smb2_rsp_hdr+0x1e2/0x1f4 [ksmbd]
[ 411.479537] kasan_check_range+0x149/0x1e0
[ 411.479543] memcpy+0x24/0x70
[ 411.479550] init_smb2_rsp_hdr+0x1e2/0x1f4 [ksmbd]
[ 411.479585] handle_ksmbd_work+0x109/0x760 [ksmbd]
[ 411.479616] ? _raw_spin_unlock_irqrestore+0x50/0x50
[ 411.479624] ? smb3_encrypt_resp+0x340/0x340 [ksmbd]
[ 411.479656] process_one_work+0x49c/0x790
[ 411.479667] worker_thread+0x2b1/0x6e0
[ 411.479674] ? process_one_work+0x790/0x790
[ 411.479680] kthread+0x177/0x1b0
[ 411.479686] ? kthread_complete_and_exit+0x30/0x30
[ 411.479692] ret_from_fork+0x22/0x30
[ 411.479702] </TASK> |