Search

Search Results (331154 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2026-23058 1 Linux 1 Linux Kernel 2026-02-04 N/A
In the Linux kernel, the following vulnerability has been resolved: can: ems_usb: ems_usb_read_bulk_callback(): fix URB memory leak Fix similar memory leak as in commit 7352e1d5932a ("can: gs_usb: gs_usb_receive_bulk_callback(): fix URB memory leak"). In ems_usb_open(), the URBs for USB-in transfers are allocated, added to the dev->rx_submitted anchor and submitted. In the complete callback ems_usb_read_bulk_callback(), the URBs are processed and resubmitted. In ems_usb_close() the URBs are freed by calling usb_kill_anchored_urbs(&dev->rx_submitted). However, this does not take into account that the USB framework unanchors the URB before the complete function is called. This means that once an in-URB has been completed, it is no longer anchored and is ultimately not released in ems_usb_close(). Fix the memory leak by anchoring the URB in the ems_usb_read_bulk_callback() to the dev->rx_submitted anchor.
CVE-2026-23057 1 Linux 1 Linux Kernel 2026-02-04 N/A
In the Linux kernel, the following vulnerability has been resolved: vsock/virtio: Coalesce only linear skb vsock/virtio common tries to coalesce buffers in rx queue: if a linear skb (with a spare tail room) is followed by a small skb (length limited by GOOD_COPY_LEN = 128), an attempt is made to join them. Since the introduction of MSG_ZEROCOPY support, assumption that a small skb will always be linear is incorrect. In the zerocopy case, data is lost and the linear skb is appended with uninitialized kernel memory. Of all 3 supported virtio-based transports, only loopback-transport is affected. G2H virtio-transport rx queue operates on explicitly linear skbs; see virtio_vsock_alloc_linear_skb() in virtio_vsock_rx_fill(). H2G vhost-transport may allocate non-linear skbs, but only for sizes that are not considered for coalescence; see PAGE_ALLOC_COSTLY_ORDER in virtio_vsock_alloc_skb(). Ensure only linear skbs are coalesced. Note that skb_tailroom(last_skb) > 0 guarantees last_skb is linear.
CVE-2026-23056 1 Linux 1 Linux Kernel 2026-02-04 N/A
In the Linux kernel, the following vulnerability has been resolved: uacce: implement mremap in uacce_vm_ops to return -EPERM The current uacce_vm_ops does not support the mremap operation of vm_operations_struct. Implement .mremap to return -EPERM to remind users. The reason we need to explicitly disable mremap is that when the driver does not implement .mremap, it uses the default mremap method. This could lead to a risk scenario: An application might first mmap address p1, then mremap to p2, followed by munmap(p1), and finally munmap(p2). Since the default mremap copies the original vma's vm_private_data (i.e., q) to the new vma, both munmap operations would trigger vma_close, causing q->qfr to be freed twice(qfr will be set to null here, so repeated release is ok).
CVE-2026-23055 1 Linux 1 Linux Kernel 2026-02-04 N/A
In the Linux kernel, the following vulnerability has been resolved: i2c: riic: Move suspend handling to NOIRQ phase Commit 53326135d0e0 ("i2c: riic: Add suspend/resume support") added suspend support for the Renesas I2C driver and following this change on RZ/G3E the following WARNING is seen on entering suspend ... [ 134.275704] Freezing remaining freezable tasks completed (elapsed 0.001 seconds) [ 134.285536] ------------[ cut here ]------------ [ 134.290298] i2c i2c-2: Transfer while suspended [ 134.295174] WARNING: drivers/i2c/i2c-core.h:56 at __i2c_smbus_xfer+0x1e4/0x214, CPU#0: systemd-sleep/388 [ 134.365507] Tainted: [W]=WARN [ 134.368485] Hardware name: Renesas SMARC EVK version 2 based on r9a09g047e57 (DT) [ 134.375961] pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 134.382935] pc : __i2c_smbus_xfer+0x1e4/0x214 [ 134.387329] lr : __i2c_smbus_xfer+0x1e4/0x214 [ 134.391717] sp : ffff800083f23860 [ 134.395040] x29: ffff800083f23860 x28: 0000000000000000 x27: ffff800082ed5d60 [ 134.402226] x26: 0000001f4395fd74 x25: 0000000000000007 x24: 0000000000000001 [ 134.409408] x23: 0000000000000000 x22: 000000000000006f x21: ffff800083f23936 [ 134.416589] x20: ffff0000c090e140 x19: ffff0000c090e0d0 x18: 0000000000000006 [ 134.423771] x17: 6f63657320313030 x16: 2e30206465737061 x15: ffff800083f23280 [ 134.430953] x14: 0000000000000000 x13: ffff800082b16ce8 x12: 0000000000000f09 [ 134.438134] x11: 0000000000000503 x10: ffff800082b6ece8 x9 : ffff800082b16ce8 [ 134.445315] x8 : 00000000ffffefff x7 : ffff800082b6ece8 x6 : 80000000fffff000 [ 134.452495] x5 : 0000000000000504 x4 : 0000000000000000 x3 : 0000000000000000 [ 134.459672] x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff0000c9ee9e80 [ 134.466851] Call trace: [ 134.469311] __i2c_smbus_xfer+0x1e4/0x214 (P) [ 134.473715] i2c_smbus_xfer+0xbc/0x120 [ 134.477507] i2c_smbus_read_byte_data+0x4c/0x84 [ 134.482077] isl1208_i2c_read_time+0x44/0x178 [rtc_isl1208] [ 134.487703] isl1208_rtc_read_time+0x14/0x20 [rtc_isl1208] [ 134.493226] __rtc_read_time+0x44/0x88 [ 134.497012] rtc_read_time+0x3c/0x68 [ 134.500622] rtc_suspend+0x9c/0x170 The warning is triggered because I2C transfers can still be attempted while the controller is already suspended, due to inappropriate ordering of the system sleep callbacks. If the controller is autosuspended, there is no way to wake it up once runtime PM disabled (in suspend_late()). During system resume, the I2C controller will be available only after runtime PM is re-enabled (in resume_early()). However, this may be too late for some devices. Wake up the controller in the suspend() callback while runtime PM is still enabled. The I2C controller will remain available until the suspend_noirq() callback (pm_runtime_force_suspend()) is called. During resume, the I2C controller can be restored by the resume_noirq() callback (pm_runtime_force_resume()). Finally, the resume() callback re-enables autosuspend. As a result, the I2C controller can remain available until the system enters suspend_noirq() and from resume_noirq().
CVE-2026-23054 1 Linux 1 Linux Kernel 2026-02-04 N/A
In the Linux kernel, the following vulnerability has been resolved: net: hv_netvsc: reject RSS hash key programming without RX indirection table RSS configuration requires a valid RX indirection table. When the device reports a single receive queue, rndis_filter_device_add() does not allocate an indirection table, accepting RSS hash key updates in this state leads to a hang. Fix this by gating netvsc_set_rxfh() on ndc->rx_table_sz and return -EOPNOTSUPP when the table is absent. This aligns set_rxfh with the device capabilities and prevents incorrect behavior.
CVE-2026-23053 1 Linux 1 Linux Kernel 2026-02-04 N/A
In the Linux kernel, the following vulnerability has been resolved: NFS: Fix a deadlock involving nfs_release_folio() Wang Zhaolong reports a deadlock involving NFSv4.1 state recovery waiting on kthreadd, which is attempting to reclaim memory by calling nfs_release_folio(). The latter cannot make progress due to state recovery being needed. It seems that the only safe thing to do here is to kick off a writeback of the folio, without waiting for completion, or else kicking off an asynchronous commit.
CVE-2026-23052 1 Linux 1 Linux Kernel 2026-02-04 N/A
In the Linux kernel, the following vulnerability has been resolved: ftrace: Do not over-allocate ftrace memory The pg_remaining calculation in ftrace_process_locs() assumes that ENTRIES_PER_PAGE multiplied by 2^order equals the actual capacity of the allocated page group. However, ENTRIES_PER_PAGE is PAGE_SIZE / ENTRY_SIZE (integer division). When PAGE_SIZE is not a multiple of ENTRY_SIZE (e.g. 4096 / 24 = 170 with remainder 16), high-order allocations (like 256 pages) have significantly more capacity than 256 * 170. This leads to pg_remaining being underestimated, which in turn makes skip (derived from skipped - pg_remaining) larger than expected, causing the WARN(skip != remaining) to trigger. Extra allocated pages for ftrace: 2 with 654 skipped WARNING: CPU: 0 PID: 0 at kernel/trace/ftrace.c:7295 ftrace_process_locs+0x5bf/0x5e0 A similar problem in ftrace_allocate_records() can result in allocating too many pages. This can trigger the second warning in ftrace_process_locs(). Extra allocated pages for ftrace WARNING: CPU: 0 PID: 0 at kernel/trace/ftrace.c:7276 ftrace_process_locs+0x548/0x580 Use the actual capacity of a page group to determine the number of pages to allocate. Have ftrace_allocate_pages() return the number of allocated pages to avoid having to calculate it. Use the actual page group capacity when validating the number of unused pages due to skipped entries. Drop the definition of ENTRIES_PER_PAGE since it is no longer used.
CVE-2026-23051 1 Linux 1 Linux Kernel 2026-02-04 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: fix drm panic null pointer when driver not support atomic When driver not support atomic, fb using plane->fb rather than plane->state->fb. (cherry picked from commit 2f2a72de673513247cd6fae14e53f6c40c5841ef)
CVE-2026-23050 1 Linux 1 Linux Kernel 2026-02-04 N/A
In the Linux kernel, the following vulnerability has been resolved: pNFS: Fix a deadlock when returning a delegation during open() Ben Coddington reports seeing a hang in the following stack trace: 0 [ffffd0b50e1774e0] __schedule at ffffffff9ca05415 1 [ffffd0b50e177548] schedule at ffffffff9ca05717 2 [ffffd0b50e177558] bit_wait at ffffffff9ca061e1 3 [ffffd0b50e177568] __wait_on_bit at ffffffff9ca05cfb 4 [ffffd0b50e1775c8] out_of_line_wait_on_bit at ffffffff9ca05ea5 5 [ffffd0b50e177618] pnfs_roc at ffffffffc154207b [nfsv4] 6 [ffffd0b50e1776b8] _nfs4_proc_delegreturn at ffffffffc1506586 [nfsv4] 7 [ffffd0b50e177788] nfs4_proc_delegreturn at ffffffffc1507480 [nfsv4] 8 [ffffd0b50e1777f8] nfs_do_return_delegation at ffffffffc1523e41 [nfsv4] 9 [ffffd0b50e177838] nfs_inode_set_delegation at ffffffffc1524a75 [nfsv4] 10 [ffffd0b50e177888] nfs4_process_delegation at ffffffffc14f41dd [nfsv4] 11 [ffffd0b50e1778a0] _nfs4_opendata_to_nfs4_state at ffffffffc1503edf [nfsv4] 12 [ffffd0b50e1778c0] _nfs4_open_and_get_state at ffffffffc1504e56 [nfsv4] 13 [ffffd0b50e177978] _nfs4_do_open at ffffffffc15051b8 [nfsv4] 14 [ffffd0b50e1779f8] nfs4_do_open at ffffffffc150559c [nfsv4] 15 [ffffd0b50e177a80] nfs4_atomic_open at ffffffffc15057fb [nfsv4] 16 [ffffd0b50e177ad0] nfs4_file_open at ffffffffc15219be [nfsv4] 17 [ffffd0b50e177b78] do_dentry_open at ffffffff9c09e6ea 18 [ffffd0b50e177ba8] vfs_open at ffffffff9c0a082e 19 [ffffd0b50e177bd0] dentry_open at ffffffff9c0a0935 The issue is that the delegreturn is being asked to wait for a layout return that cannot complete because a state recovery was initiated. The state recovery cannot complete until the open() finishes processing the delegations it was given. The solution is to propagate the existing flags that indicate a non-blocking call to the function pnfs_roc(), so that it knows not to wait in this situation.
CVE-2026-23049 1 Linux 1 Linux Kernel 2026-02-04 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/panel-simple: fix connector type for DataImage SCF0700C48GGU18 panel The connector type for the DataImage SCF0700C48GGU18 panel is missing and devm_drm_panel_bridge_add() requires connector type to be set. This leads to a warning and a backtrace in the kernel log and panel does not work: " WARNING: CPU: 3 PID: 38 at drivers/gpu/drm/bridge/panel.c:379 devm_drm_of_get_bridge+0xac/0xb8 " The warning is triggered by a check for valid connector type in devm_drm_panel_bridge_add(). If there is no valid connector type set for a panel, the warning is printed and panel is not added. Fill in the missing connector type to fix the warning and make the panel operational once again.
CVE-2026-20123 2026-02-04 4.3 Medium
A vulnerability in the web-based management interface of Cisco Evolved Programmable Network Manager (EPNM) and Cisco Prime Infrastructure could allow an unauthenticated, remote attacker to redirect a user to a malicious web page. This vulnerability is due to improper input validation of the parameters in the HTTP request. An attacker could exploit this vulnerability by intercepting and modifying an HTTP request from a user. A successful exploit could allow the attacker to redirect the user to a malicious web page.
CVE-2026-20119 2026-02-04 7.5 High
A vulnerability in the text rendering subsystem of Cisco TelePresence Collaboration Endpoint (CE) Software and Cisco RoomOS Software could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device. This vulnerability is due to insufficient validation of input received by an affected device. An attacker could exploit this vulnerability by getting the affected device to render crafted text, for example, a crafted meeting invitation. As indicated in the CVSS score, no user interaction is required, such as accepting the meeting invitation. A successful exploit could allow the attacker to cause the affected device to reload, resulting in a DoS condition.
CVE-2026-20111 2026-02-04 4.8 Medium
A vulnerability in the web-based management interface of Cisco Prime Infrastructure could allow an authenticated, remote attacker to conduct a stored cross-site scripting (XSS) attack against users of the interface of an affected system. This vulnerability exists because the web-based management interface does not properly validate user-supplied input. An attacker could exploit this vulnerability by inserting malicious code into specific data fields in the interface. A successful exploit could allow the attacker to execute arbitrary script code in the context of the affected interface or access sensitive, browser-based information. To exploit this vulnerability, an attacker must have valid administrative credentials.
CVE-2026-20098 2026-02-04 8.8 High
A vulnerability in the Certificate Management feature of Cisco Meeting Management could allow an authenticated, remote attacker to upload arbitrary files, execute arbitrary commands, and elevate privileges to root on an affected system. This vulnerability is due to improper input validation in certain sections of the web-based management interface. An attacker could exploit this vulnerability by sending a crafted HTTP request to an affected system. A successful exploit could allow the attacker to upload arbitrary files to the affected system. The malicious files could overwrite system files that are processed by the root system account and allow arbitrary command execution with root privileges. To exploit this vulnerability, the attacker must have valid credentials for a user account with at least the role of video operator.
CVE-2026-20056 2026-02-04 4 Medium
A vulnerability in the Dynamic Vectoring and Streaming (DVS) Engine implementation of Cisco AsyncOS Software for Cisco Secure Web Appliance could allow an unauthenticated, remote attacker to bypass the anti-malware scanner, allowing malicious archive files to be downloaded. This vulnerability is due to improper handling of certain archive files. An attacker could exploit this vulnerability by sending a crafted archive file, which should be blocked, through an affected device. A successful exploit could allow the attacker to bypass the anti-malware scanner and download malware onto an end user workstation. The downloaded malware will not automatically execute unless the end user extracts and launches the malicious file. 
CVE-2026-1814 1 Rapid7 1 Nexpose 2026-02-04 N/A
A security vulnerability has been identified in Rapid7 Nexpose. Remediation is in progress.
CVE-2026-0662 1 Autodesk 1 3ds Max 2026-02-04 7.8 High
A maliciously crafted project directory, when opening a max file in Autodesk 3ds Max, could lead to execution of arbitrary code in the context of the current process due to an Untrusted Search Path being utilized.
CVE-2026-0661 1 Autodesk 1 3ds Max 2026-02-04 7.8 High
A maliciously crafted RGB file, when parsed through Autodesk 3ds Max, can force a Memory Corruption vulnerability. A malicious actor can leverage this vulnerability to execute arbitrary code in the context of the current process.
CVE-2026-0660 1 Autodesk 1 3ds Max 2026-02-04 7.8 High
A maliciously crafted GIF file, when parsed through Autodesk 3ds Max, can cause a Stack-Based Buffer Overflow vulnerability. A malicious actor can leverage this vulnerability to execute arbitrary code in the context of the current process.
CVE-2026-0659 1 Autodesk 3 3ds Max, Arnold, Usd For Arnold 2026-02-04 7.8 High
A maliciously crafted USD file, when loaded or imported into Autodesk Arnold or Autodesk 3ds Max, can force an Out-of-Bounds Write vulnerability. A malicious actor can leverage this vulnerability to execute arbitrary code in the context of the current process.