| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A reflected cross-site scripting vulnerability in Kentico Xperience allows attackers to inject malicious scripts via administration input fields in the Rich text editor component. Attackers can exploit this vulnerability to execute arbitrary scripts in users' browsers. |
| A stored cross-site scripting vulnerability in Kentico Xperience allows administration users to inject malicious scripts via email marketing templates. Attackers can exploit this vulnerability to execute malicious scripts that could compromise user browsers and steal sensitive information. |
| Hasura GraphQL 1.3.3 contains a local file read vulnerability that allows attackers to access system files through SQL injection in the query endpoint. Attackers can exploit the pg_read_file() PostgreSQL function by crafting malicious SQL queries to read arbitrary files on the server. |
| A stored cross-site scripting vulnerability in Kentico Xperience allows attackers to upload files with spoofed Content-Type that do not match file extensions. Attackers can exploit this vulnerability by uploading malicious files with manipulated MIME types, allowing malicious scripts to execute in users' browsers. |
| A stored cross-site scripting vulnerability in Kentico Xperience allows attackers to inject malicious scripts via error messages containing specially crafted object names. This allows malicious scripts to execute in users' browsers when administrators view error messages in the administration interface. |
| SecureProps is a PHP library designed to simplify the encryption and decryption of property data in objects. A vulnerability in SecureProps version 1.2.0 and 1.2.1 involves a regex failing to detect tags during decryption of encrypted data. This occurs when the encrypted data has been encoded with `NullEncoder` and passed to `TagAwareCipher`, and contains special characters such as `\n`. As a result, the decryption process is skipped since the tags are not detected. This causes the encrypted data to be returned in plain format. The vulnerability affects users who implement `TagAwareCipher` with any base cipher that has `NullEncoder` (not default). The patch for the issue has been released. Users are advised to update to version 1.2.2. As a workaround, one may use the default `Base64Encoder` with the base cipher decorated with `TagAwareCipher` to prevent special characters in the encrypted string from interfering with regex tag detection logic. This workaround is safe but may involve double encoding since `TagAwareCipher` uses `NullEncoder` by default. |
| ** UNSUPPORTED WHEN ASSIGNED ** A vulnerability was found in DeepFaceLab pretrained DF.wf.288res.384.92.72.22 and classified as problematic. This issue affects the function apply_xseg of the file main.py. The manipulation leads to deserialization. The attack may be initiated remotely. The complexity of an attack is rather high. The exploitation is known to be difficult. The exploit has been disclosed to the public and may be used. The associated identifier of this vulnerability is VDB-253391. NOTE: This vulnerability only affects products that are no longer supported by the maintainer. |
| A security flaw has been discovered in sunhailin12315 product-review 商品评价系统 up to 91ead6890b4065bb45b7602d0d73348e75cb4639. This affects an unknown part of the component Write a Review. Performing manipulation of the argument content results in cross site scripting. The attack is possible to be carried out remotely. The exploit has been released to the public and may be exploited. This product adopts a rolling release strategy to maintain continuous delivery The project was informed of the problem early through an issue report but has not responded yet. |
| The Strong Testimonials plugin for WordPress is vulnerable to unauthorized modification of data due to a missing capability check in the 'edit_rating' function in all versions up to, and including, 3.2.18. This makes it possible for authenticated attackers with Contributor-level access and above to modify or delete the rating meta on any testimonial post, including those created by other users, by reusing a valid nonce obtained from their own testimonial edit screen. |
| ** REJECT ** DO NOT USE THIS CVE RECORD. ConsultIDs: none. Reason: This record was in a CNA pool that was not assigned to any issues during 2024. Notes: none. |
| ** REJECT ** DO NOT USE THIS CVE RECORD. ConsultIDs: none. Reason: This record was in a CNA pool that was not assigned to any issues during 2024. Notes: none. |
| ** REJECT ** DO NOT USE THIS CVE RECORD. ConsultIDs: none. Reason: This record was in a CNA pool that was not assigned to any issues during 2024. Notes: none. |
| ** REJECT ** DO NOT USE THIS CVE RECORD. ConsultIDs: none. Reason: This record was in a CNA pool that was not assigned to any issues during 2024. Notes: none. |
| ** REJECT ** DO NOT USE THIS CVE RECORD. ConsultIDs: none. Reason: This record was in a CNA pool that was not assigned to any issues during 2024. Notes: none. |
| ** REJECT ** DO NOT USE THIS CVE RECORD. ConsultIDs: none. Reason: This record was in a CNA pool that was not assigned to any issues during 2024. Notes: none. |
| In the Linux kernel, the following vulnerability has been resolved:
misc: pci_endpoint_test: Free IRQs before removing the device
In pci_endpoint_test_remove(), freeing the IRQs after removing the device
creates a small race window for IRQs to be received with the test device
memory already released, causing the IRQ handler to access invalid memory,
resulting in an oops.
Free the device IRQs before removing the device to avoid this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: qat - fix out-of-bounds read
When preparing an AER-CTR request, the driver copies the key provided by
the user into a data structure that is accessible by the firmware.
If the target device is QAT GEN4, the key size is rounded up by 16 since
a rounded up size is expected by the device.
If the key size is rounded up before the copy, the size used for copying
the key might be bigger than the size of the region containing the key,
causing an out-of-bounds read.
Fix by doing the copy first and then update the keylen.
This is to fix the following warning reported by KASAN:
[ 138.150574] BUG: KASAN: global-out-of-bounds in qat_alg_skcipher_init_com.isra.0+0x197/0x250 [intel_qat]
[ 138.150641] Read of size 32 at addr ffffffff88c402c0 by task cryptomgr_test/2340
[ 138.150651] CPU: 15 PID: 2340 Comm: cryptomgr_test Not tainted 6.2.0-rc1+ #45
[ 138.150659] Hardware name: Intel Corporation ArcherCity/ArcherCity, BIOS EGSDCRB1.86B.0087.D13.2208261706 08/26/2022
[ 138.150663] Call Trace:
[ 138.150668] <TASK>
[ 138.150922] kasan_check_range+0x13a/0x1c0
[ 138.150931] memcpy+0x1f/0x60
[ 138.150940] qat_alg_skcipher_init_com.isra.0+0x197/0x250 [intel_qat]
[ 138.151006] qat_alg_skcipher_init_sessions+0xc1/0x240 [intel_qat]
[ 138.151073] crypto_skcipher_setkey+0x82/0x160
[ 138.151085] ? prepare_keybuf+0xa2/0xd0
[ 138.151095] test_skcipher_vec_cfg+0x2b8/0x800 |
| In the Linux kernel, the following vulnerability has been resolved:
dm: fix a race condition in retrieve_deps
There's a race condition in the multipath target when retrieve_deps
races with multipath_message calling dm_get_device and dm_put_device.
retrieve_deps walks the list of open devices without holding any lock
but multipath may add or remove devices to the list while it is
running. The end result may be memory corruption or use-after-free
memory access.
See this description of a UAF with multipath_message():
https://listman.redhat.com/archives/dm-devel/2022-October/052373.html
Fix this bug by introducing a new rw semaphore "devices_lock". We grab
devices_lock for read in retrieve_deps and we grab it for write in
dm_get_device and dm_put_device. |
| In the Linux kernel, the following vulnerability has been resolved:
cxl/pmem: Fix nvdimm registration races
A loop of the form:
while true; do modprobe cxl_pci; modprobe -r cxl_pci; done
...fails with the following crash signature:
BUG: kernel NULL pointer dereference, address: 0000000000000040
[..]
RIP: 0010:cxl_internal_send_cmd+0x5/0xb0 [cxl_core]
[..]
Call Trace:
<TASK>
cxl_pmem_ctl+0x121/0x240 [cxl_pmem]
nvdimm_get_config_data+0xd6/0x1a0 [libnvdimm]
nd_label_data_init+0x135/0x7e0 [libnvdimm]
nvdimm_probe+0xd6/0x1c0 [libnvdimm]
nvdimm_bus_probe+0x7a/0x1e0 [libnvdimm]
really_probe+0xde/0x380
__driver_probe_device+0x78/0x170
driver_probe_device+0x1f/0x90
__device_attach_driver+0x85/0x110
bus_for_each_drv+0x7d/0xc0
__device_attach+0xb4/0x1e0
bus_probe_device+0x9f/0xc0
device_add+0x445/0x9c0
nd_async_device_register+0xe/0x40 [libnvdimm]
async_run_entry_fn+0x30/0x130
...namely that the bottom half of async nvdimm device registration runs
after the CXL has already torn down the context that cxl_pmem_ctl()
needs. Unlike the ACPI NFIT case that benefits from launching multiple
nvdimm device registrations in parallel from those listed in the table,
CXL is already marked PROBE_PREFER_ASYNCHRONOUS. So provide for a
synchronous registration path to preclude this scenario. |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: set __exception_irq_entry with __irq_entry as a default
filter_irq_stacks() is supposed to cut entries which are related irq entries
from its call stack.
And in_irqentry_text() which is called by filter_irq_stacks()
uses __irqentry_text_start/end symbol to find irq entries in callstack.
But it doesn't work correctly as without "CONFIG_FUNCTION_GRAPH_TRACER",
arm64 kernel doesn't include gic_handle_irq which is entry point of arm64 irq
between __irqentry_text_start and __irqentry_text_end as we discussed in below link.
https://lore.kernel.org/all/CACT4Y+aReMGLYua2rCLHgFpS9io5cZC04Q8GLs-uNmrn1ezxYQ@mail.gmail.com/#t
This problem can makes unintentional deep call stack entries especially
in KASAN enabled situation as below.
[ 2479.383395]I[0:launcher-loader: 1719] Stack depot reached limit capacity
[ 2479.383538]I[0:launcher-loader: 1719] WARNING: CPU: 0 PID: 1719 at lib/stackdepot.c:129 __stack_depot_save+0x464/0x46c
[ 2479.385693]I[0:launcher-loader: 1719] pstate: 624000c5 (nZCv daIF +PAN -UAO +TCO -DIT -SSBS BTYPE=--)
[ 2479.385724]I[0:launcher-loader: 1719] pc : __stack_depot_save+0x464/0x46c
[ 2479.385751]I[0:launcher-loader: 1719] lr : __stack_depot_save+0x460/0x46c
[ 2479.385774]I[0:launcher-loader: 1719] sp : ffffffc0080073c0
[ 2479.385793]I[0:launcher-loader: 1719] x29: ffffffc0080073e0 x28: ffffffd00b78a000 x27: 0000000000000000
[ 2479.385839]I[0:launcher-loader: 1719] x26: 000000000004d1dd x25: ffffff891474f000 x24: 00000000ca64d1dd
[ 2479.385882]I[0:launcher-loader: 1719] x23: 0000000000000200 x22: 0000000000000220 x21: 0000000000000040
[ 2479.385925]I[0:launcher-loader: 1719] x20: ffffffc008007440 x19: 0000000000000000 x18: 0000000000000000
[ 2479.385969]I[0:launcher-loader: 1719] x17: 2065726568207475 x16: 000000000000005e x15: 2d2d2d2d2d2d2d20
[ 2479.386013]I[0:launcher-loader: 1719] x14: 5d39313731203a72 x13: 00000000002f6b30 x12: 00000000002f6af8
[ 2479.386057]I[0:launcher-loader: 1719] x11: 00000000ffffffff x10: ffffffb90aacf000 x9 : e8a74a6c16008800
[ 2479.386101]I[0:launcher-loader: 1719] x8 : e8a74a6c16008800 x7 : 00000000002f6b30 x6 : 00000000002f6af8
[ 2479.386145]I[0:launcher-loader: 1719] x5 : ffffffc0080070c8 x4 : ffffffd00b192380 x3 : ffffffd0092b313c
[ 2479.386189]I[0:launcher-loader: 1719] x2 : 0000000000000001 x1 : 0000000000000004 x0 : 0000000000000022
[ 2479.386231]I[0:launcher-loader: 1719] Call trace:
[ 2479.386248]I[0:launcher-loader: 1719] __stack_depot_save+0x464/0x46c
[ 2479.386273]I[0:launcher-loader: 1719] kasan_save_stack+0x58/0x70
[ 2479.386303]I[0:launcher-loader: 1719] save_stack_info+0x34/0x138
[ 2479.386331]I[0:launcher-loader: 1719] kasan_save_free_info+0x18/0x24
[ 2479.386358]I[0:launcher-loader: 1719] ____kasan_slab_free+0x16c/0x170
[ 2479.386385]I[0:launcher-loader: 1719] __kasan_slab_free+0x10/0x20
[ 2479.386410]I[0:launcher-loader: 1719] kmem_cache_free+0x238/0x53c
[ 2479.386435]I[0:launcher-loader: 1719] mempool_free_slab+0x1c/0x28
[ 2479.386460]I[0:launcher-loader: 1719] mempool_free+0x7c/0x1a0
[ 2479.386484]I[0:launcher-loader: 1719] bvec_free+0x34/0x80
[ 2479.386514]I[0:launcher-loader: 1719] bio_free+0x60/0x98
[ 2479.386540]I[0:launcher-loader: 1719] bio_put+0x50/0x21c
[ 2479.386567]I[0:launcher-loader: 1719] f2fs_write_end_io+0x4ac/0x4d0
[ 2479.386594]I[0:launcher-loader: 1719] bio_endio+0x2dc/0x300
[ 2479.386622]I[0:launcher-loader: 1719] __dm_io_complete+0x324/0x37c
[ 2479.386650]I[0:launcher-loader: 1719] dm_io_dec_pending+0x60/0xa4
[ 2479.386676]I[0:launcher-loader: 1719] clone_endio+0xf8/0x2f0
[ 2479.386700]I[0:launcher-loader: 1719] bio_endio+0x2dc/0x300
[ 2479.386727]I[0:launcher-loader: 1719] blk_update_request+0x258/0x63c
[ 2479.386754]I[0:launcher-loader: 1719] scsi_end_request+0x50/0x304
[ 2479.386782]I[0:launcher-loader: 1719] scsi_io_completion+0x88/0x160
[ 2479.386808]I[0:launcher-loader: 1719] scsi_finish_command+0x17c/0x194
[ 2479.386833]I
---truncated--- |