Search Results (16992 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2026-23208 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ALSA: usb-audio: Prevent excessive number of frames In this case, the user constructed the parameters with maxpacksize 40 for rate 22050 / pps 1000, and packsize[0] 22 packsize[1] 23. The buffer size for each data URB is maxpacksize * packets, which in this example is 40 * 6 = 240; When the user performs a write operation to send audio data into the ALSA PCM playback stream, the calculated number of frames is packsize[0] * packets = 264, which exceeds the allocated URB buffer size, triggering the out-of-bounds (OOB) issue reported by syzbot [1]. Added a check for the number of single data URB frames when calculating the number of frames to prevent [1]. [1] BUG: KASAN: slab-out-of-bounds in copy_to_urb+0x261/0x460 sound/usb/pcm.c:1487 Write of size 264 at addr ffff88804337e800 by task syz.0.17/5506 Call Trace: copy_to_urb+0x261/0x460 sound/usb/pcm.c:1487 prepare_playback_urb+0x953/0x13d0 sound/usb/pcm.c:1611 prepare_outbound_urb+0x377/0xc50 sound/usb/endpoint.c:333
CVE-2025-71220 1 Linux 1 Linux Kernel 2026-02-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: smb/server: call ksmbd_session_rpc_close() on error path in create_smb2_pipe() When ksmbd_iov_pin_rsp() fails, we should call ksmbd_session_rpc_close().
CVE-2026-23209 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: macvlan: fix error recovery in macvlan_common_newlink() valis provided a nice repro to crash the kernel: ip link add p1 type veth peer p2 ip link set address 00:00:00:00:00:20 dev p1 ip link set up dev p1 ip link set up dev p2 ip link add mv0 link p2 type macvlan mode source ip link add invalid% link p2 type macvlan mode source macaddr add 00:00:00:00:00:20 ping -c1 -I p1 1.2.3.4 He also gave a very detailed analysis: <quote valis> The issue is triggered when a new macvlan link is created with MACVLAN_MODE_SOURCE mode and MACVLAN_MACADDR_ADD (or MACVLAN_MACADDR_SET) parameter, lower device already has a macvlan port and register_netdevice() called from macvlan_common_newlink() fails (e.g. because of the invalid link name). In this case macvlan_hash_add_source is called from macvlan_change_sources() / macvlan_common_newlink(): This adds a reference to vlan to the port's vlan_source_hash using macvlan_source_entry. vlan is a pointer to the priv data of the link that is being created. When register_netdevice() fails, the error is returned from macvlan_newlink() to rtnl_newlink_create(): if (ops->newlink) err = ops->newlink(dev, &params, extack); else err = register_netdevice(dev); if (err < 0) { free_netdev(dev); goto out; } and free_netdev() is called, causing a kvfree() on the struct net_device that is still referenced in the source entry attached to the lower device's macvlan port. Now all packets sent on the macvlan port with a matching source mac address will trigger a use-after-free in macvlan_forward_source(). </quote valis> With all that, my fix is to make sure we call macvlan_flush_sources() regardless of @create value whenever "goto destroy_macvlan_port;" path is taken. Many thanks to valis for following up on this issue.
CVE-2026-23192 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: linkwatch: use __dev_put() in callers to prevent UAF After linkwatch_do_dev() calls __dev_put() to release the linkwatch reference, the device refcount may drop to 1. At this point, netdev_run_todo() can proceed (since linkwatch_sync_dev() sees an empty list and returns without blocking), wait for the refcount to become 1 via netdev_wait_allrefs_any(), and then free the device via kobject_put(). This creates a use-after-free when __linkwatch_run_queue() tries to call netdev_unlock_ops() on the already-freed device. Note that adding netdev_lock_ops()/netdev_unlock_ops() pair in netdev_run_todo() before kobject_put() would not work, because netdev_lock_ops() is conditional - it only locks when netdev_need_ops_lock() returns true. If the device doesn't require ops_lock, linkwatch won't hold any lock, and netdev_run_todo() acquiring the lock won't provide synchronization. Fix this by moving __dev_put() from linkwatch_do_dev() to its callers. The device reference logically pairs with de-listing the device, so it's reasonable for the caller that did the de-listing to release it. This allows placing __dev_put() after all device accesses are complete, preventing UAF. The bug can be reproduced by adding mdelay(2000) after linkwatch_do_dev() in __linkwatch_run_queue(), then running: ip tuntap add mode tun name tun_test ip link set tun_test up ip link set tun_test carrier off ip link set tun_test carrier on sleep 0.5 ip tuntap del mode tun name tun_test KASAN report: ================================================================== BUG: KASAN: use-after-free in netdev_need_ops_lock include/net/netdev_lock.h:33 [inline] BUG: KASAN: use-after-free in netdev_unlock_ops include/net/netdev_lock.h:47 [inline] BUG: KASAN: use-after-free in __linkwatch_run_queue+0x865/0x8a0 net/core/link_watch.c:245 Read of size 8 at addr ffff88804de5c008 by task kworker/u32:10/8123 CPU: 0 UID: 0 PID: 8123 Comm: kworker/u32:10 Not tainted syzkaller #0 PREEMPT(full) Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 Workqueue: events_unbound linkwatch_event Call Trace: <TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x100/0x190 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0x156/0x4c9 mm/kasan/report.c:482 kasan_report+0xdf/0x1a0 mm/kasan/report.c:595 netdev_need_ops_lock include/net/netdev_lock.h:33 [inline] netdev_unlock_ops include/net/netdev_lock.h:47 [inline] __linkwatch_run_queue+0x865/0x8a0 net/core/link_watch.c:245 linkwatch_event+0x8f/0xc0 net/core/link_watch.c:304 process_one_work+0x9c2/0x1840 kernel/workqueue.c:3257 process_scheduled_works kernel/workqueue.c:3340 [inline] worker_thread+0x5da/0xe40 kernel/workqueue.c:3421 kthread+0x3b3/0x730 kernel/kthread.c:463 ret_from_fork+0x754/0xaf0 arch/x86/kernel/process.c:158 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:246 </TASK> ==================================================================
CVE-2026-23199 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: procfs: avoid fetching build ID while holding VMA lock Fix PROCMAP_QUERY to fetch optional build ID only after dropping mmap_lock or per-VMA lock, whichever was used to lock VMA under question, to avoid deadlock reported by syzbot: -> #1 (&mm->mmap_lock){++++}-{4:4}: __might_fault+0xed/0x170 _copy_to_iter+0x118/0x1720 copy_page_to_iter+0x12d/0x1e0 filemap_read+0x720/0x10a0 blkdev_read_iter+0x2b5/0x4e0 vfs_read+0x7f4/0xae0 ksys_read+0x12a/0x250 do_syscall_64+0xcb/0xf80 entry_SYSCALL_64_after_hwframe+0x77/0x7f -> #0 (&sb->s_type->i_mutex_key#8){++++}-{4:4}: __lock_acquire+0x1509/0x26d0 lock_acquire+0x185/0x340 down_read+0x98/0x490 blkdev_read_iter+0x2a7/0x4e0 __kernel_read+0x39a/0xa90 freader_fetch+0x1d5/0xa80 __build_id_parse.isra.0+0xea/0x6a0 do_procmap_query+0xd75/0x1050 procfs_procmap_ioctl+0x7a/0xb0 __x64_sys_ioctl+0x18e/0x210 do_syscall_64+0xcb/0xf80 entry_SYSCALL_64_after_hwframe+0x77/0x7f other info that might help us debug this: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- rlock(&mm->mmap_lock); lock(&sb->s_type->i_mutex_key#8); lock(&mm->mmap_lock); rlock(&sb->s_type->i_mutex_key#8); *** DEADLOCK *** This seems to be exacerbated (as we haven't seen these syzbot reports before that) by the recent: 777a8560fd29 ("lib/buildid: use __kernel_read() for sleepable context") To make this safe, we need to grab file refcount while VMA is still locked, but other than that everything is pretty straightforward. Internal build_id_parse() API assumes VMA is passed, but it only needs the underlying file reference, so just add another variant build_id_parse_file() that expects file passed directly. [akpm@linux-foundation.org: fix up kerneldoc]
CVE-2026-23175 1 Linux 1 Linux Kernel 2026-02-18 N/A
In the Linux kernel, the following vulnerability has been resolved: net: cpsw: Execute ndo_set_rx_mode callback in a work queue Commit 1767bb2d47b7 ("ipv6: mcast: Don't hold RTNL for IPV6_ADD_MEMBERSHIP and MCAST_JOIN_GROUP.") removed the RTNL lock for IPV6_ADD_MEMBERSHIP and MCAST_JOIN_GROUP operations. However, this change triggered the following call trace on my BeagleBone Black board: WARNING: net/8021q/vlan_core.c:236 at vlan_for_each+0x120/0x124, CPU#0: rpcbind/481 RTNL: assertion failed at net/8021q/vlan_core.c (236) Modules linked in: CPU: 0 UID: 997 PID: 481 Comm: rpcbind Not tainted 6.19.0-rc7-next-20260130-yocto-standard+ #35 PREEMPT Hardware name: Generic AM33XX (Flattened Device Tree) Call trace: unwind_backtrace from show_stack+0x28/0x2c show_stack from dump_stack_lvl+0x30/0x38 dump_stack_lvl from __warn+0xb8/0x11c __warn from warn_slowpath_fmt+0x130/0x194 warn_slowpath_fmt from vlan_for_each+0x120/0x124 vlan_for_each from cpsw_add_mc_addr+0x54/0x98 cpsw_add_mc_addr from __hw_addr_ref_sync_dev+0xc4/0xec __hw_addr_ref_sync_dev from __dev_mc_add+0x78/0x88 __dev_mc_add from igmp6_group_added+0x84/0xec igmp6_group_added from __ipv6_dev_mc_inc+0x1fc/0x2f0 __ipv6_dev_mc_inc from __ipv6_sock_mc_join+0x124/0x1b4 __ipv6_sock_mc_join from do_ipv6_setsockopt+0x84c/0x1168 do_ipv6_setsockopt from ipv6_setsockopt+0x88/0xc8 ipv6_setsockopt from do_sock_setsockopt+0xe8/0x19c do_sock_setsockopt from __sys_setsockopt+0x84/0xac __sys_setsockopt from ret_fast_syscall+0x0/0x54 This trace occurs because vlan_for_each() is called within cpsw_ndo_set_rx_mode(), which expects the RTNL lock to be held. Since modifying vlan_for_each() to operate without the RTNL lock is not straightforward, and because ndo_set_rx_mode() is invoked both with and without the RTNL lock across different code paths, simply adding rtnl_lock() in cpsw_ndo_set_rx_mode() is not a viable solution. To resolve this issue, we opt to execute the actual processing within a work queue, following the approach used by the icssg-prueth driver. Please note: To reproduce this issue, I manually reverted the changes to am335x-bone-common.dtsi from commit c477358e66a3 ("ARM: dts: am335x-bone: switch to new cpsw switch drv") in order to revert to the legacy cpsw driver.
CVE-2026-23205 1 Linux 1 Linux Kernel 2026-02-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: smb/client: fix memory leak in smb2_open_file() Reproducer: 1. server: directories are exported read-only 2. client: mount -t cifs //${server_ip}/export /mnt 3. client: dd if=/dev/zero of=/mnt/file bs=512 count=1000 oflag=direct 4. client: umount /mnt 5. client: sleep 1 6. client: modprobe -r cifs The error message is as follows: ============================================================================= BUG cifs_small_rq (Not tainted): Objects remaining on __kmem_cache_shutdown() ----------------------------------------------------------------------------- Object 0x00000000d47521be @offset=14336 ... WARNING: mm/slub.c:1251 at __kmem_cache_shutdown+0x34e/0x440, CPU#0: modprobe/1577 ... Call Trace: <TASK> kmem_cache_destroy+0x94/0x190 cifs_destroy_request_bufs+0x3e/0x50 [cifs] cleanup_module+0x4e/0x540 [cifs] __se_sys_delete_module+0x278/0x400 __x64_sys_delete_module+0x5f/0x70 x64_sys_call+0x2299/0x2ff0 do_syscall_64+0x89/0x350 entry_SYSCALL_64_after_hwframe+0x76/0x7e ... kmem_cache_destroy cifs_small_rq: Slab cache still has objects when called from cifs_destroy_request_bufs+0x3e/0x50 [cifs] WARNING: mm/slab_common.c:532 at kmem_cache_destroy+0x16b/0x190, CPU#0: modprobe/1577
CVE-2026-23177 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mm, shmem: prevent infinite loop on truncate race When truncating a large swap entry, shmem_free_swap() returns 0 when the entry's index doesn't match the given index due to lookup alignment. The failure fallback path checks if the entry crosses the end border and aborts when it happens, so truncate won't erase an unexpected entry or range. But one scenario was ignored. When `index` points to the middle of a large swap entry, and the large swap entry doesn't go across the end border, find_get_entries() will return that large swap entry as the first item in the batch with `indices[0]` equal to `index`. The entry's base index will be smaller than `indices[0]`, so shmem_free_swap() will fail and return 0 due to the "base < index" check. The code will then call shmem_confirm_swap(), get the order, check if it crosses the END boundary (which it doesn't), and retry with the same index. The next iteration will find the same entry again at the same index with same indices, leading to an infinite loop. Fix this by retrying with a round-down index, and abort if the index is smaller than the truncate range.
CVE-2026-23180 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: dpaa2-switch: add bounds check for if_id in IRQ handler The IRQ handler extracts if_id from the upper 16 bits of the hardware status register and uses it to index into ethsw->ports[] without validation. Since if_id can be any 16-bit value (0-65535) but the ports array is only allocated with sw_attr.num_ifs elements, this can lead to an out-of-bounds read potentially. Add a bounds check before accessing the array, consistent with the existing validation in dpaa2_switch_rx().
CVE-2026-23188 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: usb: r8152: fix resume reset deadlock rtl8152 can trigger device reset during reset which potentially can result in a deadlock: **** DPM device timeout after 10 seconds; 15 seconds until panic **** Call Trace: <TASK> schedule+0x483/0x1370 schedule_preempt_disabled+0x15/0x30 __mutex_lock_common+0x1fd/0x470 __rtl8152_set_mac_address+0x80/0x1f0 dev_set_mac_address+0x7f/0x150 rtl8152_post_reset+0x72/0x150 usb_reset_device+0x1d0/0x220 rtl8152_resume+0x99/0xc0 usb_resume_interface+0x3e/0xc0 usb_resume_both+0x104/0x150 usb_resume+0x22/0x110 The problem is that rtl8152 resume calls reset under tp->control mutex while reset basically re-enters rtl8152 and attempts to acquire the same tp->control lock once again. Reset INACCESSIBLE device outside of tp->control mutex scope to avoid recursive mutex_lock() deadlock.
CVE-2026-23201 1 Linux 1 Linux Kernel 2026-02-18 N/A
In the Linux kernel, the following vulnerability has been resolved: ceph: fix oops due to invalid pointer for kfree() in parse_longname() This fixes a kernel oops when reading ceph snapshot directories (.snap), for example by simply running `ls /mnt/my_ceph/.snap`. The variable str is guarded by __free(kfree), but advanced by one for skipping the initial '_' in snapshot names. Thus, kfree() is called with an invalid pointer. This patch removes the need for advancing the pointer so kfree() is called with correct memory pointer. Steps to reproduce: 1. Create snapshots on a cephfs volume (I've 63 snaps in my testcase) 2. Add cephfs mount to fstab $ echo "samba-fileserver@.files=/volumes/datapool/stuff/3461082b-ecc9-4e82-8549-3fd2590d3fb6 /mnt/test/stuff ceph acl,noatime,_netdev 0 0" >> /etc/fstab 3. Reboot the system $ systemctl reboot 4. Check if it's really mounted $ mount | grep stuff 5. List snapshots (expected 63 snapshots on my system) $ ls /mnt/test/stuff/.snap Now ls hangs forever and the kernel log shows the oops.
CVE-2023-42753 3 Debian, Linux, Redhat 9 Debian Linux, Linux Kernel, Enterprise Linux and 6 more 2026-02-18 7 High
An array indexing vulnerability was found in the netfilter subsystem of the Linux kernel. A missing macro could lead to a miscalculation of the `h->nets` array offset, providing attackers with the primitive to arbitrarily increment/decrement a memory buffer out-of-bound. This issue may allow a local user to crash the system or potentially escalate their privileges on the system.
CVE-2023-4010 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2026-02-18 4.6 Medium
A flaw was found in the USB Host Controller Driver framework in the Linux kernel. The usb_giveback_urb function has a logic loophole in its implementation. Due to the inappropriate judgment condition of the goto statement, the function cannot return under the input of a specific malformed descriptor file, so it falls into an endless loop, resulting in a denial of service.
CVE-2025-40005 1 Linux 1 Linux Kernel 2026-02-16 7.0 High
In the Linux kernel, the following vulnerability has been resolved: spi: cadence-quadspi: Implement refcount to handle unbind during busy driver support indirect read and indirect write operation with assumption no force device removal(unbind) operation. However force device removal(removal) is still available to root superuser. Unbinding driver during operation causes kernel crash. This changes ensure driver able to handle such operation for indirect read and indirect write by implementing refcount to track attached devices to the controller and gracefully wait and until attached devices remove operation completed before proceed with removal operation.
CVE-2025-38162 1 Linux 1 Linux Kernel 2026-02-16 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: netfilter: nft_set_pipapo: prevent overflow in lookup table allocation When calculating the lookup table size, ensure the following multiplication does not overflow: - desc->field_len[] maximum value is U8_MAX multiplied by NFT_PIPAPO_GROUPS_PER_BYTE(f) that can be 2, worst case. - NFT_PIPAPO_BUCKETS(f->bb) is 2^8, worst case. - sizeof(unsigned long), from sizeof(*f->lt), lt in struct nft_pipapo_field. Then, use check_mul_overflow() to multiply by bucket size and then use check_add_overflow() to the alignment for avx2 (if needed). Finally, add lt_size_check_overflow() helper and use it to consolidate this. While at it, replace leftover allocation using the GFP_KERNEL to GFP_KERNEL_ACCOUNT for consistency, in pipapo_resize().
CVE-2025-55248 4 Apple, Linux, Microsoft and 1 more 22 Macos, Linux Kernel, .net and 19 more 2026-02-13 4.8 Medium
Inadequate encryption strength in .NET, .NET Framework, Visual Studio allows an authorized attacker to disclose information over a network.
CVE-2025-55247 3 Linux, Microsoft, Redhat 3 Linux Kernel, .net, Enterprise Linux 2026-02-13 7.3 High
Improper link resolution before file access ('link following') in .NET allows an authorized attacker to elevate privileges locally.
CVE-2026-23111 1 Linux 1 Linux Kernel 2026-02-13 7.0 High
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: fix inverted genmask check in nft_map_catchall_activate() nft_map_catchall_activate() has an inverted element activity check compared to its non-catchall counterpart nft_mapelem_activate() and compared to what is logically required. nft_map_catchall_activate() is called from the abort path to re-activate catchall map elements that were deactivated during a failed transaction. It should skip elements that are already active (they don't need re-activation) and process elements that are inactive (they need to be restored). Instead, the current code does the opposite: it skips inactive elements and processes active ones. Compare the non-catchall activate callback, which is correct: nft_mapelem_activate(): if (nft_set_elem_active(ext, iter->genmask)) return 0; /* skip active, process inactive */ With the buggy catchall version: nft_map_catchall_activate(): if (!nft_set_elem_active(ext, genmask)) continue; /* skip inactive, process active */ The consequence is that when a DELSET operation is aborted, nft_setelem_data_activate() is never called for the catchall element. For NFT_GOTO verdict elements, this means nft_data_hold() is never called to restore the chain->use reference count. Each abort cycle permanently decrements chain->use. Once chain->use reaches zero, DELCHAIN succeeds and frees the chain while catchall verdict elements still reference it, resulting in a use-after-free. This is exploitable for local privilege escalation from an unprivileged user via user namespaces + nftables on distributions that enable CONFIG_USER_NS and CONFIG_NF_TABLES. Fix by removing the negation so the check matches nft_mapelem_activate(): skip active elements, process inactive ones.
CVE-2026-23112 1 Linux 1 Linux Kernel 2026-02-13 7.6 High
In the Linux kernel, the following vulnerability has been resolved: nvmet-tcp: add bounds checks in nvmet_tcp_build_pdu_iovec nvmet_tcp_build_pdu_iovec() could walk past cmd->req.sg when a PDU length or offset exceeds sg_cnt and then use bogus sg->length/offset values, leading to _copy_to_iter() GPF/KASAN. Guard sg_idx, remaining entries, and sg->length/offset before building the bvec.
CVE-2025-21172 4 Apple, Linux, Microsoft and 1 more 10 Macos, Linux Kernel, .net and 7 more 2026-02-13 7.5 High
.NET and Visual Studio Remote Code Execution Vulnerability