CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: fix deinitialization of firmware resources
Currently, in ath11k_ahb_fw_resources_init(), iommu domain
mapping is done only for the chipsets having fixed firmware
memory. Also, for such chipsets, mapping is done only if it
does not have TrustZone support.
During deinitialization, only if TrustZone support is not there,
iommu is unmapped back. However, for non fixed firmware memory
chipsets, TrustZone support is not there and this makes the
condition check to true and it tries to unmap the memory which
was not mapped during initialization.
This leads to the following trace -
[ 83.198790] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000008
[ 83.259537] Modules linked in: ath11k_ahb ath11k qmi_helpers
.. snip ..
[ 83.280286] pstate: 20000005 (nzCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 83.287228] pc : __iommu_unmap+0x30/0x140
[ 83.293907] lr : iommu_unmap+0x5c/0xa4
[ 83.298072] sp : ffff80000b3abad0
.. snip ..
[ 83.369175] Call trace:
[ 83.376282] __iommu_unmap+0x30/0x140
[ 83.378541] iommu_unmap+0x5c/0xa4
[ 83.382360] ath11k_ahb_fw_resource_deinit.part.12+0x2c/0xac [ath11k_ahb]
[ 83.385666] ath11k_ahb_free_resources+0x140/0x17c [ath11k_ahb]
[ 83.392521] ath11k_ahb_shutdown+0x34/0x40 [ath11k_ahb]
[ 83.398248] platform_shutdown+0x20/0x2c
[ 83.403455] device_shutdown+0x16c/0x1c4
[ 83.407621] kernel_restart_prepare+0x34/0x3c
[ 83.411529] kernel_restart+0x14/0x74
[ 83.415781] __do_sys_reboot+0x1c4/0x22c
[ 83.419427] __arm64_sys_reboot+0x1c/0x24
[ 83.423420] invoke_syscall+0x44/0xfc
[ 83.427326] el0_svc_common.constprop.3+0xac/0xe8
[ 83.430974] do_el0_svc+0xa0/0xa8
[ 83.435659] el0_svc+0x1c/0x44
[ 83.438957] el0t_64_sync_handler+0x60/0x144
[ 83.441910] el0t_64_sync+0x15c/0x160
[ 83.446343] Code: aa0103f4 f9400001 f90027a1 d2800001 (f94006a0)
[ 83.449903] ---[ end trace 0000000000000000 ]---
This can be reproduced by probing an AHB chipset which is not
having a fixed memory region. During reboot (or rmmod) trace
can be seen.
Fix this issue by adding a condition check on firmware fixed memory
hw_param as done in the counter initialization function.
Tested-on: IPQ8074 hw2.0 AHB WLAN.HK.2.7.0.1-01744-QCAHKSWPL_SILICONZ-1 |
In the Linux kernel, the following vulnerability has been resolved:
gpu: host1x: Fix memory leak of device names
The device names allocated by dev_set_name() need be freed
before module unloading, but they can not be freed because
the kobject's refcount which was set in device_initialize()
has not be decreased to 0.
As comment of device_add() says, if it fails, use only
put_device() drop the refcount, then the name will be
freed in kobejct_cleanup().
device_del() and put_device() can be replaced with
device_unregister(), so call it to unregister the added
successfully devices, and just call put_device() to the
not added device.
Add a release() function to device to avoid null release()
function WARNING in device_release(), it's empty, because
the context devices are freed together in
host1x_memory_context_list_free(). |
In the Linux kernel, the following vulnerability has been resolved:
jbd2: check 'jh->b_transaction' before removing it from checkpoint
Following process will corrupt ext4 image:
Step 1:
jbd2_journal_commit_transaction
__jbd2_journal_insert_checkpoint(jh, commit_transaction)
// Put jh into trans1->t_checkpoint_list
journal->j_checkpoint_transactions = commit_transaction
// Put trans1 into journal->j_checkpoint_transactions
Step 2:
do_get_write_access
test_clear_buffer_dirty(bh) // clear buffer dirty,set jbd dirty
__jbd2_journal_file_buffer(jh, transaction) // jh belongs to trans2
Step 3:
drop_cache
journal_shrink_one_cp_list
jbd2_journal_try_remove_checkpoint
if (!trylock_buffer(bh)) // lock bh, true
if (buffer_dirty(bh)) // buffer is not dirty
__jbd2_journal_remove_checkpoint(jh)
// remove jh from trans1->t_checkpoint_list
Step 4:
jbd2_log_do_checkpoint
trans1 = journal->j_checkpoint_transactions
// jh is not in trans1->t_checkpoint_list
jbd2_cleanup_journal_tail(journal) // trans1 is done
Step 5: Power cut, trans2 is not committed, jh is lost in next mounting.
Fix it by checking 'jh->b_transaction' before remove it from checkpoint. |
In the Linux kernel, the following vulnerability has been resolved:
virtio_net: Fix error unwinding of XDP initialization
When initializing XDP in virtnet_open(), some rq xdp initialization
may hit an error causing net device open failed. However, previous
rqs have already initialized XDP and enabled NAPI, which is not the
expected behavior. Need to roll back the previous rq initialization
to avoid leaks in error unwinding of init code.
Also extract helper functions of disable and enable queue pairs.
Use newly introduced disable helper function in error unwinding and
virtnet_close. Use enable helper function in virtnet_open. |
In the Linux kernel, the following vulnerability has been resolved:
macvlan: add forgotten nla_policy for IFLA_MACVLAN_BC_CUTOFF
The previous commit 954d1fa1ac93 ("macvlan: Add netlink attribute for
broadcast cutoff") added one additional attribute named
IFLA_MACVLAN_BC_CUTOFF to allow broadcast cutfoff.
However, it forgot to describe the nla_policy at macvlan_policy
(drivers/net/macvlan.c). Hence, this suppose NLA_S32 (4 bytes) integer
can be faked as empty (0 bytes) by a malicious user, which could leads
to OOB in heap just like CVE-2023-3773.
To fix it, this commit just completes the nla_policy description for
IFLA_MACVLAN_BC_CUTOFF. This enforces the length check and avoids the
potential OOB read. |
In the Linux kernel, the following vulnerability has been resolved:
cgroup,freezer: hold cpu_hotplug_lock before freezer_mutex
syzbot is reporting circular locking dependency between cpu_hotplug_lock
and freezer_mutex, for commit f5d39b020809 ("freezer,sched: Rewrite core
freezer logic") replaced atomic_inc() in freezer_apply_state() with
static_branch_inc() which holds cpu_hotplug_lock.
cpu_hotplug_lock => cgroup_threadgroup_rwsem => freezer_mutex
cgroup_file_write() {
cgroup_procs_write() {
__cgroup_procs_write() {
cgroup_procs_write_start() {
cgroup_attach_lock() {
cpus_read_lock() {
percpu_down_read(&cpu_hotplug_lock);
}
percpu_down_write(&cgroup_threadgroup_rwsem);
}
}
cgroup_attach_task() {
cgroup_migrate() {
cgroup_migrate_execute() {
freezer_attach() {
mutex_lock(&freezer_mutex);
(...snipped...)
}
}
}
}
(...snipped...)
}
}
}
freezer_mutex => cpu_hotplug_lock
cgroup_file_write() {
freezer_write() {
freezer_change_state() {
mutex_lock(&freezer_mutex);
freezer_apply_state() {
static_branch_inc(&freezer_active) {
static_key_slow_inc() {
cpus_read_lock();
static_key_slow_inc_cpuslocked();
cpus_read_unlock();
}
}
}
mutex_unlock(&freezer_mutex);
}
}
}
Swap locking order by moving cpus_read_lock() in freezer_apply_state()
to before mutex_lock(&freezer_mutex) in freezer_change_state(). |
In the Linux kernel, the following vulnerability has been resolved:
udf: Do not bother merging very long extents
When merging very long extents we try to push as much length as possible
to the first extent. However this is unnecessarily complicated and not
really worth the trouble. Furthermore there was a bug in the logic
resulting in corrupting extents in the file as syzbot reproducer shows.
So just don't bother with the merging of extents that are too long
together. |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: Fix hci_suspend_sync crash
If hci_unregister_dev() frees the hci_dev object but hci_suspend_notifier
may still be accessing it, it can cause the program to crash.
Here's the call trace:
<4>[102152.653246] Call Trace:
<4>[102152.653254] hci_suspend_sync+0x109/0x301 [bluetooth]
<4>[102152.653259] hci_suspend_dev+0x78/0xcd [bluetooth]
<4>[102152.653263] hci_suspend_notifier+0x42/0x7a [bluetooth]
<4>[102152.653268] notifier_call_chain+0x43/0x6b
<4>[102152.653271] __blocking_notifier_call_chain+0x48/0x69
<4>[102152.653273] __pm_notifier_call_chain+0x22/0x39
<4>[102152.653276] pm_suspend+0x287/0x57c
<4>[102152.653278] state_store+0xae/0xe5
<4>[102152.653281] kernfs_fop_write+0x109/0x173
<4>[102152.653284] __vfs_write+0x16f/0x1a2
<4>[102152.653287] ? selinux_file_permission+0xca/0x16f
<4>[102152.653289] ? security_file_permission+0x36/0x109
<4>[102152.653291] vfs_write+0x114/0x21d
<4>[102152.653293] __x64_sys_write+0x7b/0xdb
<4>[102152.653296] do_syscall_64+0x59/0x194
<4>[102152.653299] entry_SYSCALL_64_after_hwframe+0x5c/0xc1
This patch holds the reference count of the hci_dev object while
processing it in hci_suspend_notifier to avoid potential crash
caused by the race condition. |
In the Linux kernel, the following vulnerability has been resolved:
scsi: ses: Fix slab-out-of-bounds in ses_intf_remove()
A fix for:
BUG: KASAN: slab-out-of-bounds in ses_intf_remove+0x23f/0x270 [ses]
Read of size 8 at addr ffff88a10d32e5d8 by task rmmod/12013
When edev->components is zero, accessing edev->component[0] members is
wrong. |
In the Linux kernel, the following vulnerability has been resolved:
virtio-mmio: don't break lifecycle of vm_dev
vm_dev has a separate lifecycle because it has a 'struct device'
embedded. Thus, having a release callback for it is correct.
Allocating the vm_dev struct with devres totally breaks this protection,
though. Instead of waiting for the vm_dev release callback, the memory
is freed when the platform_device is removed. Resulting in a
use-after-free when finally the callback is to be called.
To easily see the problem, compile the kernel with
CONFIG_DEBUG_KOBJECT_RELEASE and unbind with sysfs.
The fix is easy, don't use devres in this case.
Found during my research about object lifetime problems. |
In the Linux kernel, the following vulnerability has been resolved:
tipc: do not update mtu if msg_max is too small in mtu negotiation
When doing link mtu negotiation, a malicious peer may send Activate msg
with a very small mtu, e.g. 4 in Shuang's testing, without checking for
the minimum mtu, l->mtu will be set to 4 in tipc_link_proto_rcv(), then
n->links[bearer_id].mtu is set to 4294967228, which is a overflow of
'4 - INT_H_SIZE - EMSG_OVERHEAD' in tipc_link_mss().
With tipc_link.mtu = 4, tipc_link_xmit() kept printing the warning:
tipc: Too large msg, purging xmit list 1 5 0 40 4!
tipc: Too large msg, purging xmit list 1 15 0 60 4!
And with tipc_link_entry.mtu 4294967228, a huge skb was allocated in
named_distribute(), and when purging it in tipc_link_xmit(), a crash
was even caused:
general protection fault, probably for non-canonical address 0x2100001011000dd: 0000 [#1] PREEMPT SMP PTI
CPU: 0 PID: 0 Comm: swapper/0 Kdump: loaded Not tainted 6.3.0.neta #19
RIP: 0010:kfree_skb_list_reason+0x7e/0x1f0
Call Trace:
<IRQ>
skb_release_data+0xf9/0x1d0
kfree_skb_reason+0x40/0x100
tipc_link_xmit+0x57a/0x740 [tipc]
tipc_node_xmit+0x16c/0x5c0 [tipc]
tipc_named_node_up+0x27f/0x2c0 [tipc]
tipc_node_write_unlock+0x149/0x170 [tipc]
tipc_rcv+0x608/0x740 [tipc]
tipc_udp_recv+0xdc/0x1f0 [tipc]
udp_queue_rcv_one_skb+0x33e/0x620
udp_unicast_rcv_skb.isra.72+0x75/0x90
__udp4_lib_rcv+0x56d/0xc20
ip_protocol_deliver_rcu+0x100/0x2d0
This patch fixes it by checking the new mtu against tipc_bearer_min_mtu(),
and not updating mtu if it is too small. |
In the Linux kernel, the following vulnerability has been resolved:
can: gs_usb: fix time stamp counter initialization
If the gs_usb device driver is unloaded (or unbound) before the
interface is shut down, the USB stack first calls the struct
usb_driver::disconnect and then the struct net_device_ops::ndo_stop
callback.
In gs_usb_disconnect() all pending bulk URBs are killed, i.e. no more
RX'ed CAN frames are send from the USB device to the host. Later in
gs_can_close() a reset control message is send to each CAN channel to
remove the controller from the CAN bus. In this race window the USB
device can still receive CAN frames from the bus and internally queue
them to be send to the host.
At least in the current version of the candlelight firmware, the queue
of received CAN frames is not emptied during the reset command. After
loading (or binding) the gs_usb driver, new URBs are submitted during
the struct net_device_ops::ndo_open callback and the candlelight
firmware starts sending its already queued CAN frames to the host.
However, this scenario was not considered when implementing the
hardware timestamp function. The cycle counter/time counter
infrastructure is set up (gs_usb_timestamp_init()) after the USBs are
submitted, resulting in a NULL pointer dereference if
timecounter_cyc2time() (via the call chain:
gs_usb_receive_bulk_callback() -> gs_usb_set_timestamp() ->
gs_usb_skb_set_timestamp()) is called too early.
Move the gs_usb_timestamp_init() function before the URBs are
submitted to fix this problem.
For a comprehensive solution, we need to consider gs_usb devices with
more than 1 channel. The cycle counter/time counter infrastructure is
setup per channel, but the RX URBs are per device. Once gs_can_open()
of _a_ channel has been called, and URBs have been submitted, the
gs_usb_receive_bulk_callback() can be called for _all_ available
channels, even for channels that are not running, yet. As cycle
counter/time counter has not set up, this will again lead to a NULL
pointer dereference.
Convert the cycle counter/time counter from a "per channel" to a "per
device" functionality. Also set it up, before submitting any URBs to
the device.
Further in gs_usb_receive_bulk_callback(), don't process any URBs for
not started CAN channels, only resubmit the URB. |
In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: Unregister devlink params in case interface is down
Currently, in case an interface is down, mlx5 driver doesn't
unregister its devlink params, which leads to this WARN[1].
Fix it by unregistering devlink params in that case as well.
[1]
[ 295.244769 ] WARNING: CPU: 15 PID: 1 at net/core/devlink.c:9042 devlink_free+0x174/0x1fc
[ 295.488379 ] CPU: 15 PID: 1 Comm: shutdown Tainted: G S OE 5.15.0-1017.19.3.g0677e61-bluefield #g0677e61
[ 295.509330 ] Hardware name: https://www.mellanox.com BlueField SoC/BlueField SoC, BIOS 4.2.0.12761 Jun 6 2023
[ 295.543096 ] pc : devlink_free+0x174/0x1fc
[ 295.551104 ] lr : mlx5_devlink_free+0x18/0x2c [mlx5_core]
[ 295.561816 ] sp : ffff80000809b850
[ 295.711155 ] Call trace:
[ 295.716030 ] devlink_free+0x174/0x1fc
[ 295.723346 ] mlx5_devlink_free+0x18/0x2c [mlx5_core]
[ 295.733351 ] mlx5_sf_dev_remove+0x98/0xb0 [mlx5_core]
[ 295.743534 ] auxiliary_bus_remove+0x2c/0x50
[ 295.751893 ] __device_release_driver+0x19c/0x280
[ 295.761120 ] device_release_driver+0x34/0x50
[ 295.769649 ] bus_remove_device+0xdc/0x170
[ 295.777656 ] device_del+0x17c/0x3a4
[ 295.784620 ] mlx5_sf_dev_remove+0x28/0xf0 [mlx5_core]
[ 295.794800 ] mlx5_sf_dev_table_destroy+0x98/0x110 [mlx5_core]
[ 295.806375 ] mlx5_unload+0x34/0xd0 [mlx5_core]
[ 295.815339 ] mlx5_unload_one+0x70/0xe4 [mlx5_core]
[ 295.824998 ] shutdown+0xb0/0xd8 [mlx5_core]
[ 295.833439 ] pci_device_shutdown+0x3c/0xa0
[ 295.841651 ] device_shutdown+0x170/0x340
[ 295.849486 ] __do_sys_reboot+0x1f4/0x2a0
[ 295.857322 ] __arm64_sys_reboot+0x2c/0x40
[ 295.865329 ] invoke_syscall+0x78/0x100
[ 295.872817 ] el0_svc_common.constprop.0+0x54/0x184
[ 295.882392 ] do_el0_svc+0x30/0xac
[ 295.889008 ] el0_svc+0x48/0x160
[ 295.895278 ] el0t_64_sync_handler+0xa4/0x130
[ 295.903807 ] el0t_64_sync+0x1a4/0x1a8
[ 295.911120 ] ---[ end trace 4f1d2381d00d9dce ]--- |
In the Linux kernel, the following vulnerability has been resolved:
scsi: qla2xxx: Use raw_smp_processor_id() instead of smp_processor_id()
The following call trace was observed:
localhost kernel: nvme nvme0: NVME-FC{0}: controller connect complete
localhost kernel: BUG: using smp_processor_id() in preemptible [00000000] code: kworker/u129:4/75092
localhost kernel: nvme nvme0: NVME-FC{0}: new ctrl: NQN "nqn.1992-08.com.netapp:sn.b42d198afb4d11ecad6d00a098d6abfa:subsystem.PR_Channel2022_RH84_subsystem_291"
localhost kernel: caller is qla_nvme_post_cmd+0x216/0x1380 [qla2xxx]
localhost kernel: CPU: 6 PID: 75092 Comm: kworker/u129:4 Kdump: loaded Tainted: G B W OE --------- --- 5.14.0-70.22.1.el9_0.x86_64+debug #1
localhost kernel: Hardware name: HPE ProLiant XL420 Gen10/ProLiant XL420 Gen10, BIOS U39 01/13/2022
localhost kernel: Workqueue: nvme-wq nvme_async_event_work [nvme_core]
localhost kernel: Call Trace:
localhost kernel: dump_stack_lvl+0x57/0x7d
localhost kernel: check_preemption_disabled+0xc8/0xd0
localhost kernel: qla_nvme_post_cmd+0x216/0x1380 [qla2xxx]
Use raw_smp_processor_id() instead of smp_processor_id().
Also use queue_work() across the driver instead of queue_work_on() thus
avoiding usage of smp_processor_id() when CONFIG_DEBUG_PREEMPT is enabled. |
In the Linux kernel, the following vulnerability has been resolved:
ext4: allow ext4_get_group_info() to fail
Previously, ext4_get_group_info() would treat an invalid group number
as BUG(), since in theory it should never happen. However, if a
malicious attaker (or fuzzer) modifies the superblock via the block
device while it is the file system is mounted, it is possible for
s_first_data_block to get set to a very large number. In that case,
when calculating the block group of some block number (such as the
starting block of a preallocation region), could result in an
underflow and very large block group number. Then the BUG_ON check in
ext4_get_group_info() would fire, resutling in a denial of service
attack that can be triggered by root or someone with write access to
the block device.
For a quality of implementation perspective, it's best that even if
the system administrator does something that they shouldn't, that it
will not trigger a BUG. So instead of BUG'ing, ext4_get_group_info()
will call ext4_error and return NULL. We also add fallback code in
all of the callers of ext4_get_group_info() that it might NULL.
Also, since ext4_get_group_info() was already borderline to be an
inline function, un-inline it. The results in a next reduction of the
compiled text size of ext4 by roughly 2k. |
In the Linux kernel, the following vulnerability has been resolved:
scsi: ufs: core: Fix handling of lrbp->cmd
ufshcd_queuecommand() may be called two times in a row for a SCSI command
before it is completed. Hence make the following changes:
- In the functions that submit a command, do not check the old value of
lrbp->cmd nor clear lrbp->cmd in error paths.
- In ufshcd_release_scsi_cmd(), do not clear lrbp->cmd.
See also scsi_send_eh_cmnd().
This commit prevents that the following appears if a command times out:
WARNING: at drivers/ufs/core/ufshcd.c:2965 ufshcd_queuecommand+0x6f8/0x9a8
Call trace:
ufshcd_queuecommand+0x6f8/0x9a8
scsi_send_eh_cmnd+0x2c0/0x960
scsi_eh_test_devices+0x100/0x314
scsi_eh_ready_devs+0xd90/0x114c
scsi_error_handler+0x2b4/0xb70
kthread+0x16c/0x1e0 |
In the Linux kernel, the following vulnerability has been resolved:
null_blk: fix poll request timeout handling
When doing io_uring benchmark on /dev/nullb0, it's easy to crash the
kernel if poll requests timeout triggered, as reported by David. [1]
BUG: kernel NULL pointer dereference, address: 0000000000000008
Workqueue: kblockd blk_mq_timeout_work
RIP: 0010:null_timeout_rq+0x4e/0x91
Call Trace:
? null_timeout_rq+0x4e/0x91
blk_mq_handle_expired+0x31/0x4b
bt_iter+0x68/0x84
? bt_tags_iter+0x81/0x81
__sbitmap_for_each_set.constprop.0+0xb0/0xf2
? __blk_mq_complete_request_remote+0xf/0xf
bt_for_each+0x46/0x64
? __blk_mq_complete_request_remote+0xf/0xf
? percpu_ref_get_many+0xc/0x2a
blk_mq_queue_tag_busy_iter+0x14d/0x18e
blk_mq_timeout_work+0x95/0x127
process_one_work+0x185/0x263
worker_thread+0x1b5/0x227
This is indeed a race problem between null_timeout_rq() and null_poll().
null_poll() null_timeout_rq()
spin_lock(&nq->poll_lock)
list_splice_init(&nq->poll_list, &list)
spin_unlock(&nq->poll_lock)
while (!list_empty(&list))
req = list_first_entry()
list_del_init()
...
blk_mq_add_to_batch()
// req->rq_next = NULL
spin_lock(&nq->poll_lock)
// rq->queuelist->next == NULL
list_del_init(&rq->queuelist)
spin_unlock(&nq->poll_lock)
Fix these problems by setting requests state to MQ_RQ_COMPLETE under
nq->poll_lock protection, in which null_timeout_rq() can safely detect
this race and early return.
Note this patch just fix the kernel panic when request timeout happen.
[1] https://lore.kernel.org/all/3893581.1691785261@warthog.procyon.org.uk/ |
In the Linux kernel, the following vulnerability has been resolved:
irqchip/imx-irqsteer: Handle runtime power management correctly
The power domain is automatically activated from clk_prepare(). However, on
certain platforms like i.MX8QM and i.MX8QXP, the power-on handling invokes
sleeping functions, which triggers the 'scheduling while atomic' bug in the
context switch path during device probing:
BUG: scheduling while atomic: kworker/u13:1/48/0x00000002
Call trace:
__schedule_bug+0x54/0x6c
__schedule+0x7f0/0xa94
schedule+0x5c/0xc4
schedule_preempt_disabled+0x24/0x40
__mutex_lock.constprop.0+0x2c0/0x540
__mutex_lock_slowpath+0x14/0x20
mutex_lock+0x48/0x54
clk_prepare_lock+0x44/0xa0
clk_prepare+0x20/0x44
imx_irqsteer_resume+0x28/0xe0
pm_generic_runtime_resume+0x2c/0x44
__genpd_runtime_resume+0x30/0x80
genpd_runtime_resume+0xc8/0x2c0
__rpm_callback+0x48/0x1d8
rpm_callback+0x6c/0x78
rpm_resume+0x490/0x6b4
__pm_runtime_resume+0x50/0x94
irq_chip_pm_get+0x2c/0xa0
__irq_do_set_handler+0x178/0x24c
irq_set_chained_handler_and_data+0x60/0xa4
mxc_gpio_probe+0x160/0x4b0
Cure this by implementing the irq_bus_lock/sync_unlock() interrupt chip
callbacks and handle power management in them as they are invoked from
non-atomic context.
[ tglx: Rewrote change log, added Fixes tag ] |
In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix a segment issue when downgrading gso_size
Linearize the skb when downgrading gso_size because it may trigger a
BUG_ON() later when the skb is segmented as described in [1,2]. |
In the Linux kernel, the following vulnerability has been resolved:
nvme-pci: add missing condition check for existence of mapped data
nvme_map_data() is called when request has physical segments, hence
the nvme_unmap_data() should have same condition to avoid dereference. |