| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
HID: uclogic: Add NULL check in uclogic_input_configured()
devm_kasprintf() returns NULL when memory allocation fails. Currently,
uclogic_input_configured() does not check for this case, which results
in a NULL pointer dereference.
Add NULL check after devm_kasprintf() to prevent this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix use-after-free in ksmbd_session_rpc_open
A UAF issue can occur due to a race condition between
ksmbd_session_rpc_open() and __session_rpc_close().
Add rpc_lock to the session to protect it. |
| In the Linux kernel, the following vulnerability has been resolved:
xsk: Fix race condition in AF_XDP generic RX path
Move rx_lock from xsk_socket to xsk_buff_pool.
Fix synchronization for shared umem mode in
generic RX path where multiple sockets share
single xsk_buff_pool.
RX queue is exclusive to xsk_socket, while FILL
queue can be shared between multiple sockets.
This could result in race condition where two
CPU cores access RX path of two different sockets
sharing the same umem.
Protect both queues by acquiring spinlock in shared
xsk_buff_pool.
Lock contention may be minimized in the future by some
per-thread FQ buffering.
It's safe and necessary to move spin_lock_bh(rx_lock)
after xsk_rcv_check():
* xs->pool and spinlock_init is synchronized by
xsk_bind() -> xsk_is_bound() memory barriers.
* xsk_rcv_check() may return true at the moment
of xsk_release() or xsk_unbind_dev(),
however this will not cause any data races or
race conditions. xsk_unbind_dev() removes xdp
socket from all maps and waits for completion
of all outstanding rx operations. Packets in
RX path will either complete safely or drop. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: cfg80211: init wiphy_work before allocating rfkill fails
syzbort reported a uninitialize wiphy_work_lock in cfg80211_dev_free. [1]
After rfkill allocation fails, the wiphy release process will be performed,
which will cause cfg80211_dev_free to access the uninitialized wiphy_work
related data.
Move the initialization of wiphy_work to before rfkill initialization to
avoid this issue.
[1]
INFO: trying to register non-static key.
The code is fine but needs lockdep annotation, or maybe
you didn't initialize this object before use?
turning off the locking correctness validator.
CPU: 0 UID: 0 PID: 5935 Comm: syz-executor550 Not tainted 6.14.0-rc6-syzkaller-00103-g4003c9e78778 #0
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120
assign_lock_key kernel/locking/lockdep.c:983 [inline]
register_lock_class+0xc39/0x1240 kernel/locking/lockdep.c:1297
__lock_acquire+0x135/0x3c40 kernel/locking/lockdep.c:5103
lock_acquire.part.0+0x11b/0x380 kernel/locking/lockdep.c:5851
__raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:110 [inline]
_raw_spin_lock_irqsave+0x3a/0x60 kernel/locking/spinlock.c:162
cfg80211_dev_free+0x30/0x3d0 net/wireless/core.c:1196
device_release+0xa1/0x240 drivers/base/core.c:2568
kobject_cleanup lib/kobject.c:689 [inline]
kobject_release lib/kobject.c:720 [inline]
kref_put include/linux/kref.h:65 [inline]
kobject_put+0x1e4/0x5a0 lib/kobject.c:737
put_device+0x1f/0x30 drivers/base/core.c:3774
wiphy_free net/wireless/core.c:1224 [inline]
wiphy_new_nm+0x1c1f/0x2160 net/wireless/core.c:562
ieee80211_alloc_hw_nm+0x1b7a/0x2260 net/mac80211/main.c:835
mac80211_hwsim_new_radio+0x1d6/0x54e0 drivers/net/wireless/virtual/mac80211_hwsim.c:5185
hwsim_new_radio_nl+0xb42/0x12b0 drivers/net/wireless/virtual/mac80211_hwsim.c:6242
genl_family_rcv_msg_doit+0x202/0x2f0 net/netlink/genetlink.c:1115
genl_family_rcv_msg net/netlink/genetlink.c:1195 [inline]
genl_rcv_msg+0x565/0x800 net/netlink/genetlink.c:1210
netlink_rcv_skb+0x16b/0x440 net/netlink/af_netlink.c:2533
genl_rcv+0x28/0x40 net/netlink/genetlink.c:1219
netlink_unicast_kernel net/netlink/af_netlink.c:1312 [inline]
netlink_unicast+0x53c/0x7f0 net/netlink/af_netlink.c:1338
netlink_sendmsg+0x8b8/0xd70 net/netlink/af_netlink.c:1882
sock_sendmsg_nosec net/socket.c:718 [inline]
__sock_sendmsg net/socket.c:733 [inline]
____sys_sendmsg+0xaaf/0xc90 net/socket.c:2573
___sys_sendmsg+0x135/0x1e0 net/socket.c:2627
__sys_sendmsg+0x16e/0x220 net/socket.c:2659
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcd/0x250 arch/x86/entry/common.c:83
Close: https://syzkaller.appspot.com/bug?extid=aaf0488c83d1d5f4f029 |
| In the Linux kernel, the following vulnerability has been resolved:
vhost-scsi: Fix handling of multiple calls to vhost_scsi_set_endpoint
If vhost_scsi_set_endpoint is called multiple times without a
vhost_scsi_clear_endpoint between them, we can hit multiple bugs
found by Haoran Zhang:
1. Use-after-free when no tpgs are found:
This fixes a use after free that occurs when vhost_scsi_set_endpoint is
called more than once and calls after the first call do not find any
tpgs to add to the vs_tpg. When vhost_scsi_set_endpoint first finds
tpgs to add to the vs_tpg array match=true, so we will do:
vhost_vq_set_backend(vq, vs_tpg);
...
kfree(vs->vs_tpg);
vs->vs_tpg = vs_tpg;
If vhost_scsi_set_endpoint is called again and no tpgs are found
match=false so we skip the vhost_vq_set_backend call leaving the
pointer to the vs_tpg we then free via:
kfree(vs->vs_tpg);
vs->vs_tpg = vs_tpg;
If a scsi request is then sent we do:
vhost_scsi_handle_vq -> vhost_scsi_get_req -> vhost_vq_get_backend
which sees the vs_tpg we just did a kfree on.
2. Tpg dir removal hang:
This patch fixes an issue where we cannot remove a LIO/target layer
tpg (and structs above it like the target) dir due to the refcount
dropping to -1.
The problem is that if vhost_scsi_set_endpoint detects a tpg is already
in the vs->vs_tpg array or if the tpg has been removed so
target_depend_item fails, the undepend goto handler will do
target_undepend_item on all tpgs in the vs_tpg array dropping their
refcount to 0. At this time vs_tpg contains both the tpgs we have added
in the current vhost_scsi_set_endpoint call as well as tpgs we added in
previous calls which are also in vs->vs_tpg.
Later, when vhost_scsi_clear_endpoint runs it will do
target_undepend_item on all the tpgs in the vs->vs_tpg which will drop
their refcount to -1. Userspace will then not be able to remove the tpg
and will hang when it tries to do rmdir on the tpg dir.
3. Tpg leak:
This fixes a bug where we can leak tpgs and cause them to be
un-removable because the target name is overwritten when
vhost_scsi_set_endpoint is called multiple times but with different
target names.
The bug occurs if a user has called VHOST_SCSI_SET_ENDPOINT and setup
a vhost-scsi device to target/tpg mapping, then calls
VHOST_SCSI_SET_ENDPOINT again with a new target name that has tpgs we
haven't seen before (target1 has tpg1 but target2 has tpg2). When this
happens we don't teardown the old target tpg mapping and just overwrite
the target name and the vs->vs_tpg array. Later when we do
vhost_scsi_clear_endpoint, we are passed in either target1 or target2's
name and we will only match that target's tpgs when we loop over the
vs->vs_tpg. We will then return from the function without doing
target_undepend_item on the tpgs.
Because of all these bugs, it looks like being able to call
vhost_scsi_set_endpoint multiple times was never supported. The major
user, QEMU, already has checks to prevent this use case. So to fix the
issues, this patch prevents vhost_scsi_set_endpoint from being called
if it's already successfully added tpgs. To add, remove or change the
tpg config or target name, you must do a vhost_scsi_clear_endpoint
first. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: cfg80211: cancel wiphy_work before freeing wiphy
A wiphy_work can be queued from the moment the wiphy is allocated and
initialized (i.e. wiphy_new_nm). When a wiphy_work is queued, the
rdev::wiphy_work is getting queued.
If wiphy_free is called before the rdev::wiphy_work had a chance to run,
the wiphy memory will be freed, and then when it eventally gets to run
it'll use invalid memory.
Fix this by canceling the work before freeing the wiphy. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: add srng->lock for ath11k_hal_srng_* in monitor mode
ath11k_hal_srng_* should be used with srng->lock to protect srng data.
For ath11k_dp_rx_mon_dest_process() and ath11k_dp_full_mon_process_rx(),
they use ath11k_hal_srng_* for many times but never call srng->lock.
So when running (full) monitor mode, warning will occur:
RIP: 0010:ath11k_hal_srng_dst_peek+0x18/0x30 [ath11k]
Call Trace:
? ath11k_hal_srng_dst_peek+0x18/0x30 [ath11k]
ath11k_dp_rx_process_mon_status+0xc45/0x1190 [ath11k]
? idr_alloc_u32+0x97/0xd0
ath11k_dp_rx_process_mon_rings+0x32a/0x550 [ath11k]
ath11k_dp_service_srng+0x289/0x5a0 [ath11k]
ath11k_pcic_ext_grp_napi_poll+0x30/0xd0 [ath11k]
__napi_poll+0x30/0x1f0
net_rx_action+0x198/0x320
__do_softirq+0xdd/0x319
So add srng->lock for them to avoid such warnings.
Inorder to fetch the srng->lock, should change srng's definition from
'void' to 'struct hal_srng'. And initialize them elsewhere to prevent
one line of code from being too long. This is consistent with other ring
process functions, such as ath11k_dp_process_rx().
Tested-on: WCN6855 hw2.0 PCI WLAN.HSP.1.1-03125-QCAHSPSWPL_V1_V2_SILICONZ_LITE-3.6510.30
Tested-on: QCN9074 hw1.0 PCI WLAN.HK.2.7.0.1-01744-QCAHKSWPL_SILICONZ-1 |
| In the Linux kernel, the following vulnerability has been resolved:
ptr_ring: do not block hard interrupts in ptr_ring_resize_multiple()
Jakub added a lockdep_assert_no_hardirq() check in __page_pool_put_page()
to increase test coverage.
syzbot found a splat caused by hard irq blocking in
ptr_ring_resize_multiple() [1]
As current users of ptr_ring_resize_multiple() do not require
hard irqs being masked, replace it to only block BH.
Rename helpers to better reflect they are safe against BH only.
- ptr_ring_resize_multiple() to ptr_ring_resize_multiple_bh()
- skb_array_resize_multiple() to skb_array_resize_multiple_bh()
[1]
WARNING: CPU: 1 PID: 9150 at net/core/page_pool.c:709 __page_pool_put_page net/core/page_pool.c:709 [inline]
WARNING: CPU: 1 PID: 9150 at net/core/page_pool.c:709 page_pool_put_unrefed_netmem+0x157/0xa40 net/core/page_pool.c:780
Modules linked in:
CPU: 1 UID: 0 PID: 9150 Comm: syz.1.1052 Not tainted 6.11.0-rc3-syzkaller-00202-gf8669d7b5f5d #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/06/2024
RIP: 0010:__page_pool_put_page net/core/page_pool.c:709 [inline]
RIP: 0010:page_pool_put_unrefed_netmem+0x157/0xa40 net/core/page_pool.c:780
Code: 74 0e e8 7c aa fb f7 eb 43 e8 75 aa fb f7 eb 3c 65 8b 1d 38 a8 6a 76 31 ff 89 de e8 a3 ae fb f7 85 db 74 0b e8 5a aa fb f7 90 <0f> 0b 90 eb 1d 65 8b 1d 15 a8 6a 76 31 ff 89 de e8 84 ae fb f7 85
RSP: 0018:ffffc9000bda6b58 EFLAGS: 00010083
RAX: ffffffff8997e523 RBX: 0000000000000000 RCX: 0000000000040000
RDX: ffffc9000fbd0000 RSI: 0000000000001842 RDI: 0000000000001843
RBP: 0000000000000000 R08: ffffffff8997df2c R09: 1ffffd40003a000d
R10: dffffc0000000000 R11: fffff940003a000e R12: ffffea0001d00040
R13: ffff88802e8a4000 R14: dffffc0000000000 R15: 00000000ffffffff
FS: 00007fb7aaf716c0(0000) GS:ffff8880b9300000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa15a0d4b72 CR3: 00000000561b0000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
tun_ptr_free drivers/net/tun.c:617 [inline]
__ptr_ring_swap_queue include/linux/ptr_ring.h:571 [inline]
ptr_ring_resize_multiple_noprof include/linux/ptr_ring.h:643 [inline]
tun_queue_resize drivers/net/tun.c:3694 [inline]
tun_device_event+0xaaf/0x1080 drivers/net/tun.c:3714
notifier_call_chain+0x19f/0x3e0 kernel/notifier.c:93
call_netdevice_notifiers_extack net/core/dev.c:2032 [inline]
call_netdevice_notifiers net/core/dev.c:2046 [inline]
dev_change_tx_queue_len+0x158/0x2a0 net/core/dev.c:9024
do_setlink+0xff6/0x41f0 net/core/rtnetlink.c:2923
rtnl_setlink+0x40d/0x5a0 net/core/rtnetlink.c:3201
rtnetlink_rcv_msg+0x73f/0xcf0 net/core/rtnetlink.c:6647
netlink_rcv_skb+0x1e3/0x430 net/netlink/af_netlink.c:2550 |
| In the Linux kernel, the following vulnerability has been resolved:
gfs2: Fix NULL pointer dereference in gfs2_log_flush
In gfs2_jindex_free(), set sdp->sd_jdesc to NULL under the log flush
lock to provide exclusion against gfs2_log_flush().
In gfs2_log_flush(), check if sdp->sd_jdesc is non-NULL before
dereferencing it. Otherwise, we could run into a NULL pointer
dereference when outstanding glock work races with an unmount
(glock_work_func -> run_queue -> do_xmote -> inode_go_sync ->
gfs2_log_flush). |
| In the Linux kernel, the following vulnerability has been resolved:
fbcon: always restore the old font data in fbcon_do_set_font()
Commit a5a923038d70 (fbdev: fbcon: Properly revert changes when
vc_resize() failed) started restoring old font data upon failure (of
vc_resize()). But it performs so only for user fonts. It means that the
"system"/internal fonts are not restored at all. So in result, the very
first call to fbcon_do_set_font() performs no restore at all upon
failing vc_resize().
This can be reproduced by Syzkaller to crash the system on the next
invocation of font_get(). It's rather hard to hit the allocation failure
in vc_resize() on the first font_set(), but not impossible. Esp. if
fault injection is used to aid the execution/failure. It was
demonstrated by Sirius:
BUG: unable to handle page fault for address: fffffffffffffff8
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD cb7b067 P4D cb7b067 PUD cb7d067 PMD 0
Oops: 0000 [#1] PREEMPT SMP KASAN
CPU: 1 PID: 8007 Comm: poc Not tainted 6.7.0-g9d1694dc91ce #20
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
RIP: 0010:fbcon_get_font+0x229/0x800 drivers/video/fbdev/core/fbcon.c:2286
Call Trace:
<TASK>
con_font_get drivers/tty/vt/vt.c:4558 [inline]
con_font_op+0x1fc/0xf20 drivers/tty/vt/vt.c:4673
vt_k_ioctl drivers/tty/vt/vt_ioctl.c:474 [inline]
vt_ioctl+0x632/0x2ec0 drivers/tty/vt/vt_ioctl.c:752
tty_ioctl+0x6f8/0x1570 drivers/tty/tty_io.c:2803
vfs_ioctl fs/ioctl.c:51 [inline]
...
So restore the font data in any case, not only for user fonts. Note the
later 'if' is now protected by 'old_userfont' and not 'old_data' as the
latter is always set now. (And it is supposed to be non-NULL. Otherwise
we would see the bug above again.) |
| In the Linux kernel, the following vulnerability has been resolved:
Fix memory leak in posix_clock_open()
If the clk ops.open() function returns an error, we don't release the
pccontext we allocated for this clock.
Re-organize the code slightly to make it all more obvious. |
| In the Linux kernel, the following vulnerability has been resolved:
driver core: fix potential null-ptr-deref in device_add()
I got the following null-ptr-deref report while doing fault injection test:
BUG: kernel NULL pointer dereference, address: 0000000000000058
CPU: 2 PID: 278 Comm: 37-i2c-ds2482 Tainted: G B W N 6.1.0-rc3+
RIP: 0010:klist_put+0x2d/0xd0
Call Trace:
<TASK>
klist_remove+0xf1/0x1c0
device_release_driver_internal+0x196/0x210
bus_remove_device+0x1bd/0x240
device_add+0xd3d/0x1100
w1_add_master_device+0x476/0x490 [wire]
ds2482_probe+0x303/0x3e0 [ds2482]
This is how it happened:
w1_alloc_dev()
// The dev->driver is set to w1_master_driver.
memcpy(&dev->dev, device, sizeof(struct device));
device_add()
bus_add_device()
dpm_sysfs_add() // It fails, calls bus_remove_device.
// error path
bus_remove_device()
// The dev->driver is not null, but driver is not bound.
__device_release_driver()
klist_remove(&dev->p->knode_driver) <-- It causes null-ptr-deref.
// normal path
bus_probe_device() // It's not called yet.
device_bind_driver()
If dev->driver is set, in the error path after calling bus_add_device()
in device_add(), bus_remove_device() is called, then the device will be
detached from driver. But device_bind_driver() is not called yet, so it
causes null-ptr-deref while access the 'knode_driver'. To fix this, set
dev->driver to null in the error path before calling bus_remove_device(). |
| In the Linux kernel, the following vulnerability has been resolved:
iomap: Fix possible overflow condition in iomap_write_delalloc_scan
folio_next_index() returns an unsigned long value which left shifted
by PAGE_SHIFT could possibly cause an overflow on 32-bit system. Instead
use folio_pos(folio) + folio_size(folio), which does this correctly. |
| In the Linux kernel, the following vulnerability has been resolved:
HID: uclogic: Correct devm device reference for hidinput input_dev name
Reference the HID device rather than the input device for the devm
allocation of the input_dev name. Referencing the input_dev would lead to a
use-after-free when the input_dev was unregistered and subsequently fires a
uevent that depends on the name. At the point of firing the uevent, the
name would be freed by devres management.
Use devm_kasprintf to simplify the logic for allocating memory and
formatting the input_dev name string. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix memory leaks in ext4_fname_{setup_filename,prepare_lookup}
If the filename casefolding fails, we'll be leaking memory from the
fscrypt_name struct, namely from the 'crypto_buf.name' member.
Make sure we free it in the error path on both ext4_fname_setup_filename()
and ext4_fname_prepare_lookup() functions. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: Fix hci_suspend_sync crash
If hci_unregister_dev() frees the hci_dev object but hci_suspend_notifier
may still be accessing it, it can cause the program to crash.
Here's the call trace:
<4>[102152.653246] Call Trace:
<4>[102152.653254] hci_suspend_sync+0x109/0x301 [bluetooth]
<4>[102152.653259] hci_suspend_dev+0x78/0xcd [bluetooth]
<4>[102152.653263] hci_suspend_notifier+0x42/0x7a [bluetooth]
<4>[102152.653268] notifier_call_chain+0x43/0x6b
<4>[102152.653271] __blocking_notifier_call_chain+0x48/0x69
<4>[102152.653273] __pm_notifier_call_chain+0x22/0x39
<4>[102152.653276] pm_suspend+0x287/0x57c
<4>[102152.653278] state_store+0xae/0xe5
<4>[102152.653281] kernfs_fop_write+0x109/0x173
<4>[102152.653284] __vfs_write+0x16f/0x1a2
<4>[102152.653287] ? selinux_file_permission+0xca/0x16f
<4>[102152.653289] ? security_file_permission+0x36/0x109
<4>[102152.653291] vfs_write+0x114/0x21d
<4>[102152.653293] __x64_sys_write+0x7b/0xdb
<4>[102152.653296] do_syscall_64+0x59/0x194
<4>[102152.653299] entry_SYSCALL_64_after_hwframe+0x5c/0xc1
This patch holds the reference count of the hci_dev object while
processing it in hci_suspend_notifier to avoid potential crash
caused by the race condition. |
| In the Linux kernel, the following vulnerability has been resolved:
blk-cgroup: Reinit blkg_iostat_set after clearing in blkcg_reset_stats()
When blkg_alloc() is called to allocate a blkcg_gq structure
with the associated blkg_iostat_set's, there are 2 fields within
blkg_iostat_set that requires proper initialization - blkg & sync.
The former field was introduced by commit 3b8cc6298724 ("blk-cgroup:
Optimize blkcg_rstat_flush()") while the later one was introduced by
commit f73316482977 ("blk-cgroup: reimplement basic IO stats using
cgroup rstat").
Unfortunately those fields in the blkg_iostat_set's are not properly
re-initialized when they are cleared in v1's blkcg_reset_stats(). This
can lead to a kernel panic due to NULL pointer access of the blkg
pointer. The missing initialization of sync is less problematic and
can be a problem in a debug kernel due to missing lockdep initialization.
Fix these problems by re-initializing them after memory clearing. |
| In the Linux kernel, the following vulnerability has been resolved:
Revert "net/mlx5: Block entering switchdev mode with ns inconsistency"
This reverts commit 662404b24a4c4d839839ed25e3097571f5938b9b.
The revert is required due to the suspicion it is not good for anything
and cause crash. |
| In the Linux kernel, the following vulnerability has been resolved:
fbdev: fbcon: release buffer when fbcon_do_set_font() failed
syzbot is reporting memory leak at fbcon_do_set_font() [1], for
commit a5a923038d70 ("fbdev: fbcon: Properly revert changes when
vc_resize() failed") missed that the buffer might be newly allocated
by fbcon_set_font(). |
| In the Linux kernel, the following vulnerability has been resolved:
drm/ttm: fix undefined behavior in bit shift for TTM_TT_FLAG_PRIV_POPULATED
Shifting signed 32-bit value by 31 bits is undefined, so changing
significant bit to unsigned. The UBSAN warning calltrace like below:
UBSAN: shift-out-of-bounds in ./include/drm/ttm/ttm_tt.h:122:26
left shift of 1 by 31 places cannot be represented in type 'int'
Call Trace:
<TASK>
dump_stack_lvl+0x7d/0xa5
dump_stack+0x15/0x1b
ubsan_epilogue+0xe/0x4e
__ubsan_handle_shift_out_of_bounds+0x1e7/0x20c
ttm_bo_move_memcpy+0x3b4/0x460 [ttm]
bo_driver_move+0x32/0x40 [drm_vram_helper]
ttm_bo_handle_move_mem+0x118/0x200 [ttm]
ttm_bo_validate+0xfa/0x220 [ttm]
drm_gem_vram_pin_locked+0x70/0x1b0 [drm_vram_helper]
drm_gem_vram_pin+0x48/0xb0 [drm_vram_helper]
drm_gem_vram_plane_helper_prepare_fb+0x53/0xe0 [drm_vram_helper]
drm_gem_vram_simple_display_pipe_prepare_fb+0x26/0x30 [drm_vram_helper]
drm_simple_kms_plane_prepare_fb+0x4d/0xe0 [drm_kms_helper]
drm_atomic_helper_prepare_planes+0xda/0x210 [drm_kms_helper]
drm_atomic_helper_commit+0xc3/0x1e0 [drm_kms_helper]
drm_atomic_commit+0x9c/0x160 [drm]
drm_client_modeset_commit_atomic+0x33a/0x380 [drm]
drm_client_modeset_commit_locked+0x77/0x220 [drm]
drm_client_modeset_commit+0x31/0x60 [drm]
__drm_fb_helper_restore_fbdev_mode_unlocked+0xa7/0x170 [drm_kms_helper]
drm_fb_helper_set_par+0x51/0x90 [drm_kms_helper]
fbcon_init+0x316/0x790
visual_init+0x113/0x1d0
do_bind_con_driver+0x2a3/0x5c0
do_take_over_console+0xa9/0x270
do_fbcon_takeover+0xa1/0x170
do_fb_registered+0x2a8/0x340
fbcon_fb_registered+0x47/0xe0
register_framebuffer+0x294/0x4a0
__drm_fb_helper_initial_config_and_unlock+0x43c/0x880 [drm_kms_helper]
drm_fb_helper_initial_config+0x52/0x80 [drm_kms_helper]
drm_fbdev_client_hotplug+0x156/0x1b0 [drm_kms_helper]
drm_fbdev_generic_setup+0xfc/0x290 [drm_kms_helper]
bochs_pci_probe+0x6ca/0x772 [bochs]
local_pci_probe+0x4d/0xb0
pci_device_probe+0x119/0x320
really_probe+0x181/0x550
__driver_probe_device+0xc6/0x220
driver_probe_device+0x32/0x100
__driver_attach+0x195/0x200
bus_for_each_dev+0xbb/0x120
driver_attach+0x27/0x30
bus_add_driver+0x22e/0x2f0
driver_register+0xa9/0x190
__pci_register_driver+0x90/0xa0
bochs_pci_driver_init+0x52/0x1000 [bochs]
do_one_initcall+0x76/0x430
do_init_module+0x61/0x28a
load_module+0x1f82/0x2e50
__do_sys_finit_module+0xf8/0x190
__x64_sys_finit_module+0x23/0x30
do_syscall_64+0x58/0x80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
</TASK> |