| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| An out-of-memory flaw was found in libtiff that could be triggered by passing a crafted tiff file to the TIFFRasterScanlineSize64() API. This flaw allows a remote attacker to cause a denial of service via a crafted input with a size smaller than 379 KB. |
| In the Linux kernel, the following vulnerability has been resolved:
pstore/ram: Check start of empty przs during init
After commit 30696378f68a ("pstore/ram: Do not treat empty buffers as
valid"), initialization would assume a prz was valid after seeing that
the buffer_size is zero (regardless of the buffer start position). This
unchecked start value means it could be outside the bounds of the buffer,
leading to future access panics when written to:
sysdump_panic_event+0x3b4/0x5b8
atomic_notifier_call_chain+0x54/0x90
panic+0x1c8/0x42c
die+0x29c/0x2a8
die_kernel_fault+0x68/0x78
__do_kernel_fault+0x1c4/0x1e0
do_bad_area+0x40/0x100
do_translation_fault+0x68/0x80
do_mem_abort+0x68/0xf8
el1_da+0x1c/0xc0
__raw_writeb+0x38/0x174
__memcpy_toio+0x40/0xac
persistent_ram_update+0x44/0x12c
persistent_ram_write+0x1a8/0x1b8
ramoops_pstore_write+0x198/0x1e8
pstore_console_write+0x94/0xe0
...
To avoid this, also check if the prz start is 0 during the initialization
phase. If not, the next prz sanity check case will discover it (start >
size) and zap the buffer back to a sane state.
[kees: update commit log with backtrace and clarifications] |
| A vulnerability was found in Linksys RE6500, RE6250, RE6300, RE6350, RE7000 and RE9000 1.0.013.001/1.0.04.001/1.0.04.002/1.1.05.003/1.2.07.001. Affected by this vulnerability is the function AP_get_wireless_clientlist_setClientsName of the file mod_form.so. Performing manipulation of the argument clientsname_0 results in stack-based buffer overflow. The attack can be initiated remotely. The exploit has been made public and could be used. The vendor was contacted early about this disclosure but did not respond in any way. |
| A vulnerability was identified in Linksys RE6500, RE6250, RE6300, RE6350, RE7000 and RE9000 1.0.013.001/1.0.04.001/1.0.04.002/1.1.05.003/1.2.07.001. This affects the function AP_get_wired_clientlist_setClientsName of the file mod_form.so. The manipulation of the argument clientsname_0 leads to stack-based buffer overflow. The attack may be initiated remotely. The exploit is publicly available and might be used. The vendor was contacted early about this disclosure but did not respond in any way. |
| A security flaw has been discovered in Linksys RE6500, RE6250, RE6300, RE6350, RE7000 and RE9000 1.0.013.001/1.0.04.001/1.0.04.002/1.1.05.003/1.2.07.001. This vulnerability affects the function RE2000v2Repeater_get_wired_clientlist_setClientsName of the file mod_form.so. The manipulation of the argument clientsname_0 results in stack-based buffer overflow. The attack may be launched remotely. The exploit has been released to the public and may be exploited. The vendor was contacted early about this disclosure but did not respond in any way. |
| Lite XL versions 2.1.8 and prior contain a vulnerability in the system.exec function, which allowed arbitrary command execution through unsanitized shell command construction. This function was used in project directory launching (core.lua), drag-and-drop file handling (rootview.lua), and the “open in system” command in the treeview plugin (treeview.lua). If an attacker could influence input to system.exec, they might execute arbitrary commands with the privileges of the Lite XL process. |
| An Out-of-bounds Write vulnerability in WatchGuard Fireware OS's CLI could allow an authenticated privileged user to execute arbitrary code via a specially crafted CLI command.This vulnerability affects Fireware OS 12.0 up to and including 12.11.4, 12.5 up to and including 12.5.13, and 2025.1 up to and including 2025.1.2. |
| An Out-of-bounds Write vulnerability in WatchGuard Fireware OS's CLI could allow an authenticated privileged user to execute arbitrary code via specially crafted IPSec configuration CLI commands.This vulnerability affects Fireware OS 11.0 up to and including 11.12.4+541730, 12.0 up to and including 12.11.4, 12.5 up to and including 12.5.13, and 2025.1 up to and including 2025.1.2. |
| An Out-of-bounds Write vulnerability in WatchGuard Fireware OS’s certificate request command could allow an authenticated privileged user to execute arbitrary code via specially crafted CLI commands.This vulnerability affects Fireware OS 12.0 up to and including 12.11.4, 12.5 up to and including 12.5.13, and 2025.1 up to and including 2025.1.2. |
| In the Linux kernel, the following vulnerability has been resolved:
video: fbdev: nvidiafb: Use strscpy() to prevent buffer overflow
Coverity complains of a possible buffer overflow. However,
given the 'static' scope of nvidia_setup_i2c_bus() it looks
like that can't happen after examiniing the call sites.
CID 19036 (#1 of 1): Copy into fixed size buffer (STRING_OVERFLOW)
1. fixed_size_dest: You might overrun the 48-character fixed-size string
chan->adapter.name by copying name without checking the length.
2. parameter_as_source: Note: This defect has an elevated risk because the
source argument is a parameter of the current function.
89 strcpy(chan->adapter.name, name);
Fix this warning by using strscpy() which will silence the warning and
prevent any future buffer overflows should the names used to identify the
channel become much longer. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: scsi_debug: Fix type in min_t to avoid stack OOB
Change min_t() to use type "u32" instead of type "int" to avoid stack out
of bounds. With min_t() type "int" the values get sign extended and the
larger value gets used causing stack out of bounds.
BUG: KASAN: stack-out-of-bounds in memcpy include/linux/fortify-string.h:191 [inline]
BUG: KASAN: stack-out-of-bounds in sg_copy_buffer+0x1de/0x240 lib/scatterlist.c:976
Read of size 127 at addr ffff888072607128 by task syz-executor.7/18707
CPU: 1 PID: 18707 Comm: syz-executor.7 Not tainted 5.15.0-syzk #1
Hardware name: Red Hat KVM, BIOS 1.13.0-2
Call Trace:
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x89/0xb5 lib/dump_stack.c:106
print_address_description.constprop.9+0x28/0x160 mm/kasan/report.c:256
__kasan_report mm/kasan/report.c:442 [inline]
kasan_report.cold.14+0x7d/0x117 mm/kasan/report.c:459
check_region_inline mm/kasan/generic.c:183 [inline]
kasan_check_range+0x1a3/0x210 mm/kasan/generic.c:189
memcpy+0x23/0x60 mm/kasan/shadow.c:65
memcpy include/linux/fortify-string.h:191 [inline]
sg_copy_buffer+0x1de/0x240 lib/scatterlist.c:976
sg_copy_from_buffer+0x33/0x40 lib/scatterlist.c:1000
fill_from_dev_buffer.part.34+0x82/0x130 drivers/scsi/scsi_debug.c:1162
fill_from_dev_buffer drivers/scsi/scsi_debug.c:1888 [inline]
resp_readcap16+0x365/0x3b0 drivers/scsi/scsi_debug.c:1887
schedule_resp+0x4d8/0x1a70 drivers/scsi/scsi_debug.c:5478
scsi_debug_queuecommand+0x8c9/0x1ec0 drivers/scsi/scsi_debug.c:7533
scsi_dispatch_cmd drivers/scsi/scsi_lib.c:1520 [inline]
scsi_queue_rq+0x16b0/0x2d40 drivers/scsi/scsi_lib.c:1699
blk_mq_dispatch_rq_list+0xb9b/0x2700 block/blk-mq.c:1639
__blk_mq_sched_dispatch_requests+0x28f/0x590 block/blk-mq-sched.c:325
blk_mq_sched_dispatch_requests+0x105/0x190 block/blk-mq-sched.c:358
__blk_mq_run_hw_queue+0xe5/0x150 block/blk-mq.c:1761
__blk_mq_delay_run_hw_queue+0x4f8/0x5c0 block/blk-mq.c:1838
blk_mq_run_hw_queue+0x18d/0x350 block/blk-mq.c:1891
blk_mq_sched_insert_request+0x3db/0x4e0 block/blk-mq-sched.c:474
blk_execute_rq_nowait+0x16b/0x1c0 block/blk-exec.c:62
sg_common_write.isra.18+0xeb3/0x2000 drivers/scsi/sg.c:836
sg_new_write.isra.19+0x570/0x8c0 drivers/scsi/sg.c:774
sg_ioctl_common+0x14d6/0x2710 drivers/scsi/sg.c:939
sg_ioctl+0xa2/0x180 drivers/scsi/sg.c:1165
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:874 [inline]
__se_sys_ioctl fs/ioctl.c:860 [inline]
__x64_sys_ioctl+0x19d/0x220 fs/ioctl.c:860
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3a/0x80 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae |
| In the Linux kernel, the following vulnerability has been resolved:
net: tulip: de4x5: fix the problem that the array 'lp->phy[8]' may be out of bound
In line 5001, if all id in the array 'lp->phy[8]' is not 0, when the
'for' end, the 'k' is 8.
At this time, the array 'lp->phy[8]' may be out of bound. |
| In the Linux kernel, the following vulnerability has been resolved:
ocfs2: mount fails with buffer overflow in strlen
Starting with kernel 5.11 built with CONFIG_FORTIFY_SOURCE mouting an
ocfs2 filesystem with either o2cb or pcmk cluster stack fails with the
trace below. Problem seems to be that strings for cluster stack and
cluster name are not guaranteed to be null terminated in the disk
representation, while strlcpy assumes that the source string is always
null terminated. This causes a read outside of the source string
triggering the buffer overflow detection.
detected buffer overflow in strlen
------------[ cut here ]------------
kernel BUG at lib/string.c:1149!
invalid opcode: 0000 [#1] SMP PTI
CPU: 1 PID: 910 Comm: mount.ocfs2 Not tainted 5.14.0-1-amd64 #1
Debian 5.14.6-2
RIP: 0010:fortify_panic+0xf/0x11
...
Call Trace:
ocfs2_initialize_super.isra.0.cold+0xc/0x18 [ocfs2]
ocfs2_fill_super+0x359/0x19b0 [ocfs2]
mount_bdev+0x185/0x1b0
legacy_get_tree+0x27/0x40
vfs_get_tree+0x25/0xb0
path_mount+0x454/0xa20
__x64_sys_mount+0x103/0x140
do_syscall_64+0x3b/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae |
| In the Linux kernel, the following vulnerability has been resolved:
HID: betop: fix slab-out-of-bounds Write in betop_probe
Syzbot reported slab-out-of-bounds Write bug in hid-betopff driver.
The problem is the driver assumes the device must have an input report but
some malicious devices violate this assumption.
So this patch checks hid_device's input is non empty before it's been used. |
| In the Linux kernel, the following vulnerability has been resolved:
virtio-net: Add validation for used length
This adds validation for used length (might come
from an untrusted device) to avoid data corruption
or loss. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Fix list_add() corruption in lpfc_drain_txq()
When parsing the txq list in lpfc_drain_txq(), the driver attempts to pass
the requests to the adapter. If such an attempt fails, a local "fail_msg"
string is set and a log message output. The job is then added to a
completions list for cancellation.
Processing of any further jobs from the txq list continues, but since
"fail_msg" remains set, jobs are added to the completions list regardless
of whether a wqe was passed to the adapter. If successfully added to
txcmplq, jobs are added to both lists resulting in list corruption.
Fix by clearing the fail_msg string after adding a job to the completions
list. This stops the subsequent jobs from being added to the completions
list unless they had an appropriate failure. |
| In the Linux kernel, the following vulnerability has been resolved:
isdn: cpai: check ctr->cnr to avoid array index out of bound
The cmtp_add_connection() would add a cmtp session to a controller
and run a kernel thread to process cmtp.
__module_get(THIS_MODULE);
session->task = kthread_run(cmtp_session, session, "kcmtpd_ctr_%d",
session->num);
During this process, the kernel thread would call detach_capi_ctr()
to detach a register controller. if the controller
was not attached yet, detach_capi_ctr() would
trigger an array-index-out-bounds bug.
[ 46.866069][ T6479] UBSAN: array-index-out-of-bounds in
drivers/isdn/capi/kcapi.c:483:21
[ 46.867196][ T6479] index -1 is out of range for type 'capi_ctr *[32]'
[ 46.867982][ T6479] CPU: 1 PID: 6479 Comm: kcmtpd_ctr_0 Not tainted
5.15.0-rc2+ #8
[ 46.869002][ T6479] Hardware name: QEMU Standard PC (i440FX + PIIX,
1996), BIOS 1.14.0-2 04/01/2014
[ 46.870107][ T6479] Call Trace:
[ 46.870473][ T6479] dump_stack_lvl+0x57/0x7d
[ 46.870974][ T6479] ubsan_epilogue+0x5/0x40
[ 46.871458][ T6479] __ubsan_handle_out_of_bounds.cold+0x43/0x48
[ 46.872135][ T6479] detach_capi_ctr+0x64/0xc0
[ 46.872639][ T6479] cmtp_session+0x5c8/0x5d0
[ 46.873131][ T6479] ? __init_waitqueue_head+0x60/0x60
[ 46.873712][ T6479] ? cmtp_add_msgpart+0x120/0x120
[ 46.874256][ T6479] kthread+0x147/0x170
[ 46.874709][ T6479] ? set_kthread_struct+0x40/0x40
[ 46.875248][ T6479] ret_from_fork+0x1f/0x30
[ 46.875773][ T6479] |
| An Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection') vulnerability [CWE-78] vulnerability in Fortinet FortiSandbox 5.0.0 through 5.0.2, FortiSandbox 4.4.0 through 4.4.7, FortiSandbox 4.2 all versions, FortiSandbox 4.0 all versions may allow an authenticated attacker to execute unauthorized code on the underlying system via crafted HTTP requests. |
| An improper neutralization of special elements used in an OS command ('OS Command Injection') vulnerability [CWE-78] in Fortinet FortiSandbox version 5.0.0 through 5.0.2 and before 4.4.7 GUI allows a remote privileged attacker to execute unauthorized code or commands via crafted HTTP or HTTPS requests. |
| Secure Boot Security Feature Bypass Vulnerability |