CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
netfs: Call `invalidate_cache` only if implemented
Many filesystems such as NFS and Ceph do not implement the
`invalidate_cache` method. On those filesystems, if writing to the
cache (`NETFS_WRITE_TO_CACHE`) fails for some reason, the kernel
crashes like this:
BUG: kernel NULL pointer dereference, address: 0000000000000000
#PF: supervisor instruction fetch in kernel mode
#PF: error_code(0x0010) - not-present page
PGD 0 P4D 0
Oops: Oops: 0010 [#1] SMP PTI
CPU: 9 UID: 0 PID: 3380 Comm: kworker/u193:11 Not tainted 6.13.3-cm4all1-hp #437
Hardware name: HP ProLiant DL380 Gen9/ProLiant DL380 Gen9, BIOS P89 10/17/2018
Workqueue: events_unbound netfs_write_collection_worker
RIP: 0010:0x0
Code: Unable to access opcode bytes at 0xffffffffffffffd6.
RSP: 0018:ffff9b86e2ca7dc0 EFLAGS: 00010202
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 7fffffffffffffff
RDX: 0000000000000001 RSI: ffff89259d576a18 RDI: ffff89259d576900
RBP: ffff89259d5769b0 R08: ffff9b86e2ca7d28 R09: 0000000000000002
R10: ffff89258ceaca80 R11: 0000000000000001 R12: 0000000000000020
R13: ffff893d158b9338 R14: ffff89259d576900 R15: ffff89259d5769b0
FS: 0000000000000000(0000) GS:ffff893c9fa40000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffffffffffffd6 CR3: 000000054442e003 CR4: 00000000001706f0
Call Trace:
<TASK>
? __die+0x1f/0x60
? page_fault_oops+0x15c/0x460
? try_to_wake_up+0x2d2/0x530
? exc_page_fault+0x5e/0x100
? asm_exc_page_fault+0x22/0x30
netfs_write_collection_worker+0xe9f/0x12b0
? xs_poll_check_readable+0x3f/0x80
? xs_stream_data_receive_workfn+0x8d/0x110
process_one_work+0x134/0x2d0
worker_thread+0x299/0x3a0
? __pfx_worker_thread+0x10/0x10
kthread+0xba/0xe0
? __pfx_kthread+0x10/0x10
ret_from_fork+0x30/0x50
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30
</TASK>
Modules linked in:
CR2: 0000000000000000
This patch adds the missing `NULL` check. |
In the Linux kernel, the following vulnerability has been resolved:
accel/qaic: Fix integer overflow in qaic_validate_req()
These are u64 variables that come from the user via
qaic_attach_slice_bo_ioctl(). Use check_add_overflow() to ensure that
the math doesn't have an integer wrapping bug. |
In the Linux kernel, the following vulnerability has been resolved:
vmxnet3: Fix packet corruption in vmxnet3_xdp_xmit_frame
Andrew and Nikolay reported connectivity issues with Cilium's service
load-balancing in case of vmxnet3.
If a BPF program for native XDP adds an encapsulation header such as
IPIP and transmits the packet out the same interface, then in case
of vmxnet3 a corrupted packet is being sent and subsequently dropped
on the path.
vmxnet3_xdp_xmit_frame() which is called e.g. via vmxnet3_run_xdp()
through vmxnet3_xdp_xmit_back() calculates an incorrect DMA address:
page = virt_to_page(xdpf->data);
tbi->dma_addr = page_pool_get_dma_addr(page) +
VMXNET3_XDP_HEADROOM;
dma_sync_single_for_device(&adapter->pdev->dev,
tbi->dma_addr, buf_size,
DMA_TO_DEVICE);
The above assumes a fixed offset (VMXNET3_XDP_HEADROOM), but the XDP
BPF program could have moved xdp->data. While the passed buf_size is
correct (xdpf->len), the dma_addr needs to have a dynamic offset which
can be calculated as xdpf->data - (void *)xdpf, that is, xdp->data -
xdp->data_hard_start. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: fix RCU stall while reaping monitor destination ring
While processing the monitor destination ring, MSDUs are reaped from the
link descriptor based on the corresponding buf_id.
However, sometimes the driver cannot obtain a valid buffer corresponding
to the buf_id received from the hardware. This causes an infinite loop
in the destination processing, resulting in a kernel crash.
kernel log:
ath11k_pci 0000:58:00.0: data msdu_pop: invalid buf_id 309
ath11k_pci 0000:58:00.0: data dp_rx_monitor_link_desc_return failed
ath11k_pci 0000:58:00.0: data msdu_pop: invalid buf_id 309
ath11k_pci 0000:58:00.0: data dp_rx_monitor_link_desc_return failed
Fix this by skipping the problematic buf_id and reaping the next entry,
replacing the break with the next MSDU processing.
Tested-on: WCN6855 hw2.0 PCI WLAN.HSP.1.1-03125-QCAHSPSWPL_V1_V2_SILICONZ_LITE-3.6510.30
Tested-on: QCN9074 hw1.0 PCI WLAN.HK.2.7.0.1-01744-QCAHKSWPL_SILICONZ-1 |
In the Linux kernel, the following vulnerability has been resolved:
capabilities: fix potential memleak on error path from vfs_getxattr_alloc()
In cap_inode_getsecurity(), we will use vfs_getxattr_alloc() to
complete the memory allocation of tmpbuf, if we have completed
the memory allocation of tmpbuf, but failed to call handler->get(...),
there will be a memleak in below logic:
|-- ret = (int)vfs_getxattr_alloc(mnt_userns, ...)
| /* ^^^ alloc for tmpbuf */
|-- value = krealloc(*xattr_value, error + 1, flags)
| /* ^^^ alloc memory */
|-- error = handler->get(handler, ...)
| /* error! */
|-- *xattr_value = value
| /* xattr_value is &tmpbuf (memory leak!) */
So we will try to free(tmpbuf) after vfs_getxattr_alloc() fails to fix it.
[PM: subject line and backtrace tweaks] |
In the Linux kernel, the following vulnerability has been resolved:
ring-buffer: Check for NULL cpu_buffer in ring_buffer_wake_waiters()
On some machines the number of listed CPUs may be bigger than the actual
CPUs that exist. The tracing subsystem allocates a per_cpu directory with
access to the per CPU ring buffer via a cpuX file. But to save space, the
ring buffer will only allocate buffers for online CPUs, even though the
CPU array will be as big as the nr_cpu_ids.
With the addition of waking waiters on the ring buffer when closing the
file, the ring_buffer_wake_waiters() now needs to make sure that the
buffer is allocated (with the irq_work allocated with it) before trying to
wake waiters, as it will cause a NULL pointer dereference.
While debugging this, I added a NULL check for the buffer itself (which is
OK to do), and also NULL pointer checks against buffer->buffers (which is
not fine, and will WARN) as well as making sure the CPU number passed in
is within the nr_cpu_ids (which is also not fine if it isn't).
Bugzilla: https://bugzilla.opensuse.org/show_bug.cgi?id=1204705 |
In the Linux kernel, the following vulnerability has been resolved:
media: meson: vdec: fix possible refcount leak in vdec_probe()
v4l2_device_unregister need to be called to put the refcount got by
v4l2_device_register when vdec_probe fails or vdec_remove is called. |
In the Linux kernel, the following vulnerability has been resolved:
ACPI: APEI: Fix integer overflow in ghes_estatus_pool_init()
Change num_ghes from int to unsigned int, preventing an overflow
and causing subsequent vmalloc() to fail.
The overflow happens in ghes_estatus_pool_init() when calculating
len during execution of the statement below as both multiplication
operands here are signed int:
len += (num_ghes * GHES_ESOURCE_PREALLOC_MAX_SIZE);
The following call trace is observed because of this bug:
[ 9.317108] swapper/0: vmalloc error: size 18446744071562596352, exceeds total pages, mode:0xcc0(GFP_KERNEL), nodemask=(null),cpuset=/,mems_allowed=0-1
[ 9.317131] Call Trace:
[ 9.317134] <TASK>
[ 9.317137] dump_stack_lvl+0x49/0x5f
[ 9.317145] dump_stack+0x10/0x12
[ 9.317146] warn_alloc.cold+0x7b/0xdf
[ 9.317150] ? __device_attach+0x16a/0x1b0
[ 9.317155] __vmalloc_node_range+0x702/0x740
[ 9.317160] ? device_add+0x17f/0x920
[ 9.317164] ? dev_set_name+0x53/0x70
[ 9.317166] ? platform_device_add+0xf9/0x240
[ 9.317168] __vmalloc_node+0x49/0x50
[ 9.317170] ? ghes_estatus_pool_init+0x43/0xa0
[ 9.317176] vmalloc+0x21/0x30
[ 9.317177] ghes_estatus_pool_init+0x43/0xa0
[ 9.317179] acpi_hest_init+0x129/0x19c
[ 9.317185] acpi_init+0x434/0x4a4
[ 9.317188] ? acpi_sleep_proc_init+0x2a/0x2a
[ 9.317190] do_one_initcall+0x48/0x200
[ 9.317195] kernel_init_freeable+0x221/0x284
[ 9.317200] ? rest_init+0xe0/0xe0
[ 9.317204] kernel_init+0x1a/0x130
[ 9.317205] ret_from_fork+0x22/0x30
[ 9.317208] </TASK>
[ rjw: Subject and changelog edits ] |
In the Linux kernel, the following vulnerability has been resolved:
wifi: cfg80211: fix memory leak in query_regdb_file()
In the function query_regdb_file() the alpha2 parameter is duplicated
using kmemdup() and subsequently freed in regdb_fw_cb(). However,
request_firmware_nowait() can fail without calling regdb_fw_cb() and
thus leak memory. |
In the Linux kernel, the following vulnerability has been resolved:
ext4: fix warning in 'ext4_da_release_space'
Syzkaller report issue as follows:
EXT4-fs (loop0): Free/Dirty block details
EXT4-fs (loop0): free_blocks=0
EXT4-fs (loop0): dirty_blocks=0
EXT4-fs (loop0): Block reservation details
EXT4-fs (loop0): i_reserved_data_blocks=0
EXT4-fs warning (device loop0): ext4_da_release_space:1527: ext4_da_release_space: ino 18, to_free 1 with only 0 reserved data blocks
------------[ cut here ]------------
WARNING: CPU: 0 PID: 92 at fs/ext4/inode.c:1528 ext4_da_release_space+0x25e/0x370 fs/ext4/inode.c:1524
Modules linked in:
CPU: 0 PID: 92 Comm: kworker/u4:4 Not tainted 6.0.0-syzkaller-09423-g493ffd6605b2 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/22/2022
Workqueue: writeback wb_workfn (flush-7:0)
RIP: 0010:ext4_da_release_space+0x25e/0x370 fs/ext4/inode.c:1528
RSP: 0018:ffffc900015f6c90 EFLAGS: 00010296
RAX: 42215896cd52ea00 RBX: 0000000000000000 RCX: 42215896cd52ea00
RDX: 0000000000000000 RSI: 0000000080000001 RDI: 0000000000000000
RBP: 1ffff1100e907d96 R08: ffffffff816aa79d R09: fffff520002bece5
R10: fffff520002bece5 R11: 1ffff920002bece4 R12: ffff888021fd2000
R13: ffff88807483ecb0 R14: 0000000000000001 R15: ffff88807483e740
FS: 0000000000000000(0000) GS:ffff8880b9a00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00005555569ba628 CR3: 000000000c88e000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
ext4_es_remove_extent+0x1ab/0x260 fs/ext4/extents_status.c:1461
mpage_release_unused_pages+0x24d/0xef0 fs/ext4/inode.c:1589
ext4_writepages+0x12eb/0x3be0 fs/ext4/inode.c:2852
do_writepages+0x3c3/0x680 mm/page-writeback.c:2469
__writeback_single_inode+0xd1/0x670 fs/fs-writeback.c:1587
writeback_sb_inodes+0xb3b/0x18f0 fs/fs-writeback.c:1870
wb_writeback+0x41f/0x7b0 fs/fs-writeback.c:2044
wb_do_writeback fs/fs-writeback.c:2187 [inline]
wb_workfn+0x3cb/0xef0 fs/fs-writeback.c:2227
process_one_work+0x877/0xdb0 kernel/workqueue.c:2289
worker_thread+0xb14/0x1330 kernel/workqueue.c:2436
kthread+0x266/0x300 kernel/kthread.c:376
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:306
</TASK>
Above issue may happens as follows:
ext4_da_write_begin
ext4_create_inline_data
ext4_clear_inode_flag(inode, EXT4_INODE_EXTENTS);
ext4_set_inode_flag(inode, EXT4_INODE_INLINE_DATA);
__ext4_ioctl
ext4_ext_migrate -> will lead to eh->eh_entries not zero, and set extent flag
ext4_da_write_begin
ext4_da_convert_inline_data_to_extent
ext4_da_write_inline_data_begin
ext4_da_map_blocks
ext4_insert_delayed_block
if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk))
if (!ext4_es_scan_clu(inode, &ext4_es_is_mapped, lblk))
ext4_clu_mapped(inode, EXT4_B2C(sbi, lblk)); -> will return 1
allocated = true;
ext4_es_insert_delayed_block(inode, lblk, allocated);
ext4_writepages
mpage_map_and_submit_extent(handle, &mpd, &give_up_on_write); -> return -ENOSPC
mpage_release_unused_pages(&mpd, give_up_on_write); -> give_up_on_write == 1
ext4_es_remove_extent
ext4_da_release_space(inode, reserved);
if (unlikely(to_free > ei->i_reserved_data_blocks))
-> to_free == 1 but ei->i_reserved_data_blocks == 0
-> then trigger warning as above
To solve above issue, forbid inode do migrate which has inline data. |
In the Linux kernel, the following vulnerability has been resolved:
can: af_can: fix NULL pointer dereference in can_rx_register()
It causes NULL pointer dereference when testing as following:
(a) use syscall(__NR_socket, 0x10ul, 3ul, 0) to create netlink socket.
(b) use syscall(__NR_sendmsg, ...) to create bond link device and vxcan
link device, and bind vxcan device to bond device (can also use
ifenslave command to bind vxcan device to bond device).
(c) use syscall(__NR_socket, 0x1dul, 3ul, 1) to create CAN socket.
(d) use syscall(__NR_bind, ...) to bind the bond device to CAN socket.
The bond device invokes the can-raw protocol registration interface to
receive CAN packets. However, ml_priv is not allocated to the dev,
dev_rcv_lists is assigned to NULL in can_rx_register(). In this case,
it will occur the NULL pointer dereference issue.
The following is the stack information:
BUG: kernel NULL pointer dereference, address: 0000000000000008
PGD 122a4067 P4D 122a4067 PUD 1223c067 PMD 0
Oops: 0000 [#1] PREEMPT SMP
RIP: 0010:can_rx_register+0x12d/0x1e0
Call Trace:
<TASK>
raw_enable_filters+0x8d/0x120
raw_enable_allfilters+0x3b/0x130
raw_bind+0x118/0x4f0
__sys_bind+0x163/0x1a0
__x64_sys_bind+0x1e/0x30
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
</TASK> |
In the Linux kernel, the following vulnerability has been resolved:
tipc: fix the msg->req tlv len check in tipc_nl_compat_name_table_dump_header
This is a follow-up for commit 974cb0e3e7c9 ("tipc: fix uninit-value
in tipc_nl_compat_name_table_dump") where it should have type casted
sizeof(..) to int to work when TLV_GET_DATA_LEN() returns a negative
value.
syzbot reported a call trace because of it:
BUG: KMSAN: uninit-value in ...
tipc_nl_compat_name_table_dump+0x841/0xea0 net/tipc/netlink_compat.c:934
__tipc_nl_compat_dumpit+0xab2/0x1320 net/tipc/netlink_compat.c:238
tipc_nl_compat_dumpit+0x991/0xb50 net/tipc/netlink_compat.c:321
tipc_nl_compat_recv+0xb6e/0x1640 net/tipc/netlink_compat.c:1324
genl_family_rcv_msg_doit net/netlink/genetlink.c:731 [inline]
genl_family_rcv_msg net/netlink/genetlink.c:775 [inline]
genl_rcv_msg+0x103f/0x1260 net/netlink/genetlink.c:792
netlink_rcv_skb+0x3a5/0x6c0 net/netlink/af_netlink.c:2501
genl_rcv+0x3c/0x50 net/netlink/genetlink.c:803
netlink_unicast_kernel net/netlink/af_netlink.c:1319 [inline]
netlink_unicast+0xf3b/0x1270 net/netlink/af_netlink.c:1345
netlink_sendmsg+0x1288/0x1440 net/netlink/af_netlink.c:1921
sock_sendmsg_nosec net/socket.c:714 [inline]
sock_sendmsg net/socket.c:734 [inline] |
In the Linux kernel, the following vulnerability has been resolved:
net: marvell: prestera: fix memory leak in prestera_rxtx_switch_init()
When prestera_sdma_switch_init() failed, the memory pointed to by
sw->rxtx isn't released. Fix it. Only be compiled, not be tested. |
In the Linux kernel, the following vulnerability has been resolved:
net: wwan: iosm: fix memory leak in ipc_pcie_read_bios_cfg
ipc_pcie_read_bios_cfg() is using the acpi_evaluate_dsm() to
obtain the wwan power state configuration from BIOS but is
not freeing the acpi_object. The acpi_evaluate_dsm() returned
acpi_object to be freed.
Free the acpi_object after use. |
In the Linux kernel, the following vulnerability has been resolved:
mctp: Fix an error handling path in mctp_init()
If mctp_neigh_init() return error, the routes resources should
be released in the error handling path. Otherwise some resources
leak. |
In the Linux kernel, the following vulnerability has been resolved:
net: macvlan: fix memory leaks of macvlan_common_newlink
kmemleak reports memory leaks in macvlan_common_newlink, as follows:
ip link add link eth0 name .. type macvlan mode source macaddr add
<MAC-ADDR>
kmemleak reports:
unreferenced object 0xffff8880109bb140 (size 64):
comm "ip", pid 284, jiffies 4294986150 (age 430.108s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 b8 aa 5a 12 80 88 ff ff ..........Z.....
80 1b fa 0d 80 88 ff ff 1e ff ac af c7 c1 6b 6b ..............kk
backtrace:
[<ffffffff813e06a7>] kmem_cache_alloc_trace+0x1c7/0x300
[<ffffffff81b66025>] macvlan_hash_add_source+0x45/0xc0
[<ffffffff81b66a67>] macvlan_changelink_sources+0xd7/0x170
[<ffffffff81b6775c>] macvlan_common_newlink+0x38c/0x5a0
[<ffffffff81b6797e>] macvlan_newlink+0xe/0x20
[<ffffffff81d97f8f>] __rtnl_newlink+0x7af/0xa50
[<ffffffff81d98278>] rtnl_newlink+0x48/0x70
...
In the scenario where the macvlan mode is configured as 'source',
macvlan_changelink_sources() will be execured to reconfigure list of
remote source mac addresses, at the same time, if register_netdevice()
return an error, the resource generated by macvlan_changelink_sources()
is not cleaned up.
Using this patch, in the case of an error, it will execute
macvlan_flush_sources() to ensure that the resource is cleaned up. |
In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix deadlock in nilfs_count_free_blocks()
A semaphore deadlock can occur if nilfs_get_block() detects metadata
corruption while locating data blocks and a superblock writeback occurs at
the same time:
task 1 task 2
------ ------
* A file operation *
nilfs_truncate()
nilfs_get_block()
down_read(rwsem A) <--
nilfs_bmap_lookup_contig()
... generic_shutdown_super()
nilfs_put_super()
* Prepare to write superblock *
down_write(rwsem B) <--
nilfs_cleanup_super()
* Detect b-tree corruption * nilfs_set_log_cursor()
nilfs_bmap_convert_error() nilfs_count_free_blocks()
__nilfs_error() down_read(rwsem A) <--
nilfs_set_error()
down_write(rwsem B) <--
*** DEADLOCK ***
Here, nilfs_get_block() readlocks rwsem A (= NILFS_MDT(dat_inode)->mi_sem)
and then calls nilfs_bmap_lookup_contig(), but if it fails due to metadata
corruption, __nilfs_error() is called from nilfs_bmap_convert_error()
inside the lock section.
Since __nilfs_error() calls nilfs_set_error() unless the filesystem is
read-only and nilfs_set_error() attempts to writelock rwsem B (=
nilfs->ns_sem) to write back superblock exclusively, hierarchical lock
acquisition occurs in the order rwsem A -> rwsem B.
Now, if another task starts updating the superblock, it may writelock
rwsem B during the lock sequence above, and can deadlock trying to
readlock rwsem A in nilfs_count_free_blocks().
However, there is actually no need to take rwsem A in
nilfs_count_free_blocks() because it, within the lock section, only reads
a single integer data on a shared struct with
nilfs_sufile_get_ncleansegs(). This has been the case after commit
aa474a220180 ("nilfs2: add local variable to cache the number of clean
segments"), that is, even before this bug was introduced.
So, this resolves the deadlock problem by just not taking the semaphore in
nilfs_count_free_blocks(). |
In the Linux kernel, the following vulnerability has been resolved:
phy: qcom-qmp-combo: fix NULL-deref on runtime resume
Commit fc64623637da ("phy: qcom-qmp-combo,usb: add support for separate
PCS_USB region") started treating the PCS_USB registers as potentially
separate from the PCS registers but used the wrong base when no PCS_USB
offset has been provided.
Fix the PCS_USB base used at runtime resume to prevent dereferencing a
NULL pointer on platforms that do not provide a PCS_USB offset (e.g.
SC7180). |
In the Linux kernel, the following vulnerability has been resolved:
udf: Fix a slab-out-of-bounds write bug in udf_find_entry()
Syzbot reported a slab-out-of-bounds Write bug:
loop0: detected capacity change from 0 to 2048
==================================================================
BUG: KASAN: slab-out-of-bounds in udf_find_entry+0x8a5/0x14f0
fs/udf/namei.c:253
Write of size 105 at addr ffff8880123ff896 by task syz-executor323/3610
CPU: 0 PID: 3610 Comm: syz-executor323 Not tainted
6.1.0-rc2-syzkaller-00105-gb229b6ca5abb #0
Hardware name: Google Compute Engine/Google Compute Engine, BIOS
Google 10/11/2022
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x1b1/0x28e lib/dump_stack.c:106
print_address_description+0x74/0x340 mm/kasan/report.c:284
print_report+0x107/0x1f0 mm/kasan/report.c:395
kasan_report+0xcd/0x100 mm/kasan/report.c:495
kasan_check_range+0x2a7/0x2e0 mm/kasan/generic.c:189
memcpy+0x3c/0x60 mm/kasan/shadow.c:66
udf_find_entry+0x8a5/0x14f0 fs/udf/namei.c:253
udf_lookup+0xef/0x340 fs/udf/namei.c:309
lookup_open fs/namei.c:3391 [inline]
open_last_lookups fs/namei.c:3481 [inline]
path_openat+0x10e6/0x2df0 fs/namei.c:3710
do_filp_open+0x264/0x4f0 fs/namei.c:3740
do_sys_openat2+0x124/0x4e0 fs/open.c:1310
do_sys_open fs/open.c:1326 [inline]
__do_sys_creat fs/open.c:1402 [inline]
__se_sys_creat fs/open.c:1396 [inline]
__x64_sys_creat+0x11f/0x160 fs/open.c:1396
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7ffab0d164d9
Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89
f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01
f0 ff ff 73 01 c3 48 c7 c1 c0 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007ffe1a7e6bb8 EFLAGS: 00000246 ORIG_RAX: 0000000000000055
RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007ffab0d164d9
RDX: 00007ffab0d164d9 RSI: 0000000000000000 RDI: 0000000020000180
RBP: 00007ffab0cd5a10 R08: 0000000000000000 R09: 0000000000000000
R10: 00005555573552c0 R11: 0000000000000246 R12: 00007ffab0cd5aa0
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
</TASK>
Allocated by task 3610:
kasan_save_stack mm/kasan/common.c:45 [inline]
kasan_set_track+0x3d/0x60 mm/kasan/common.c:52
____kasan_kmalloc mm/kasan/common.c:371 [inline]
__kasan_kmalloc+0x97/0xb0 mm/kasan/common.c:380
kmalloc include/linux/slab.h:576 [inline]
udf_find_entry+0x7b6/0x14f0 fs/udf/namei.c:243
udf_lookup+0xef/0x340 fs/udf/namei.c:309
lookup_open fs/namei.c:3391 [inline]
open_last_lookups fs/namei.c:3481 [inline]
path_openat+0x10e6/0x2df0 fs/namei.c:3710
do_filp_open+0x264/0x4f0 fs/namei.c:3740
do_sys_openat2+0x124/0x4e0 fs/open.c:1310
do_sys_open fs/open.c:1326 [inline]
__do_sys_creat fs/open.c:1402 [inline]
__se_sys_creat fs/open.c:1396 [inline]
__x64_sys_creat+0x11f/0x160 fs/open.c:1396
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
The buggy address belongs to the object at ffff8880123ff800
which belongs to the cache kmalloc-256 of size 256
The buggy address is located 150 bytes inside of
256-byte region [ffff8880123ff800, ffff8880123ff900)
The buggy address belongs to the physical page:
page:ffffea000048ff80 refcount:1 mapcount:0 mapping:0000000000000000
index:0x0 pfn:0x123fe
head:ffffea000048ff80 order:1 compound_mapcount:0 compound_pincount:0
flags: 0xfff00000010200(slab|head|node=0|zone=1|lastcpupid=0x7ff)
raw: 00fff00000010200 ffffea00004b8500 dead000000000003 ffff888012041b40
raw: 0000000000000000 0000000080100010 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
page_owner tracks the page as allocated
page last allocated via order 0, migratetype Unmovable, gfp_mask 0x0(),
pid 1, tgid 1 (swapper/0), ts 1841222404, free_ts 0
create_dummy_stack mm/page_owner.c:
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
can: j1939: j1939_send_one(): fix missing CAN header initialization
The read access to struct canxl_frame::len inside of a j1939 created
skbuff revealed a missing initialization of reserved and later filled
elements in struct can_frame.
This patch initializes the 8 byte CAN header with zero. |