| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ipv6: Fix use-after-free in inet6_addr_del().
syzbot reported use-after-free of inet6_ifaddr in
inet6_addr_del(). [0]
The cited commit accidentally moved ipv6_del_addr() for
mngtmpaddr before reading its ifp->flags for temporary
addresses in inet6_addr_del().
Let's move ipv6_del_addr() down to fix the UAF.
[0]:
BUG: KASAN: slab-use-after-free in inet6_addr_del.constprop.0+0x67a/0x6b0 net/ipv6/addrconf.c:3117
Read of size 4 at addr ffff88807b89c86c by task syz.3.1618/9593
CPU: 0 UID: 0 PID: 9593 Comm: syz.3.1618 Not tainted syzkaller #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/25/2025
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0xcd/0x630 mm/kasan/report.c:482
kasan_report+0xe0/0x110 mm/kasan/report.c:595
inet6_addr_del.constprop.0+0x67a/0x6b0 net/ipv6/addrconf.c:3117
addrconf_del_ifaddr+0x11e/0x190 net/ipv6/addrconf.c:3181
inet6_ioctl+0x1e5/0x2b0 net/ipv6/af_inet6.c:582
sock_do_ioctl+0x118/0x280 net/socket.c:1254
sock_ioctl+0x227/0x6b0 net/socket.c:1375
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:597 [inline]
__se_sys_ioctl fs/ioctl.c:583 [inline]
__x64_sys_ioctl+0x18e/0x210 fs/ioctl.c:583
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xcd/0xf80 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f164cf8f749
Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 a8 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007f164de64038 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 00007f164d1e5fa0 RCX: 00007f164cf8f749
RDX: 0000200000000000 RSI: 0000000000008936 RDI: 0000000000000003
RBP: 00007f164d013f91 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
R13: 00007f164d1e6038 R14: 00007f164d1e5fa0 R15: 00007ffde15c8288
</TASK>
Allocated by task 9593:
kasan_save_stack+0x33/0x60 mm/kasan/common.c:56
kasan_save_track+0x14/0x30 mm/kasan/common.c:77
poison_kmalloc_redzone mm/kasan/common.c:397 [inline]
__kasan_kmalloc+0xaa/0xb0 mm/kasan/common.c:414
kmalloc_noprof include/linux/slab.h:957 [inline]
kzalloc_noprof include/linux/slab.h:1094 [inline]
ipv6_add_addr+0x4e3/0x2010 net/ipv6/addrconf.c:1120
inet6_addr_add+0x256/0x9b0 net/ipv6/addrconf.c:3050
addrconf_add_ifaddr+0x1fc/0x450 net/ipv6/addrconf.c:3160
inet6_ioctl+0x103/0x2b0 net/ipv6/af_inet6.c:580
sock_do_ioctl+0x118/0x280 net/socket.c:1254
sock_ioctl+0x227/0x6b0 net/socket.c:1375
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:597 [inline]
__se_sys_ioctl fs/ioctl.c:583 [inline]
__x64_sys_ioctl+0x18e/0x210 fs/ioctl.c:583
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xcd/0xf80 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Freed by task 6099:
kasan_save_stack+0x33/0x60 mm/kasan/common.c:56
kasan_save_track+0x14/0x30 mm/kasan/common.c:77
kasan_save_free_info+0x3b/0x60 mm/kasan/generic.c:584
poison_slab_object mm/kasan/common.c:252 [inline]
__kasan_slab_free+0x5f/0x80 mm/kasan/common.c:284
kasan_slab_free include/linux/kasan.h:234 [inline]
slab_free_hook mm/slub.c:2540 [inline]
slab_free_freelist_hook mm/slub.c:2569 [inline]
slab_free_bulk mm/slub.c:6696 [inline]
kmem_cache_free_bulk mm/slub.c:7383 [inline]
kmem_cache_free_bulk+0x2bf/0x680 mm/slub.c:7362
kfree_bulk include/linux/slab.h:830 [inline]
kvfree_rcu_bulk+0x1b7/0x1e0 mm/slab_common.c:1523
kvfree_rcu_drain_ready mm/slab_common.c:1728 [inline]
kfree_rcu_monitor+0x1d0/0x2f0 mm/slab_common.c:1801
process_one_work+0x9ba/0x1b20 kernel/workqueue.c:3257
process_scheduled_works kernel/workqu
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
x86/fpu: Clear XSTATE_BV[i] in guest XSAVE state whenever XFD[i]=1
When loading guest XSAVE state via KVM_SET_XSAVE, and when updating XFD in
response to a guest WRMSR, clear XFD-disabled features in the saved (or to
be restored) XSTATE_BV to ensure KVM doesn't attempt to load state for
features that are disabled via the guest's XFD. Because the kernel
executes XRSTOR with the guest's XFD, saving XSTATE_BV[i]=1 with XFD[i]=1
will cause XRSTOR to #NM and panic the kernel.
E.g. if fpu_update_guest_xfd() sets XFD without clearing XSTATE_BV:
------------[ cut here ]------------
WARNING: arch/x86/kernel/traps.c:1524 at exc_device_not_available+0x101/0x110, CPU#29: amx_test/848
Modules linked in: kvm_intel kvm irqbypass
CPU: 29 UID: 1000 PID: 848 Comm: amx_test Not tainted 6.19.0-rc2-ffa07f7fd437-x86_amx_nm_xfd_non_init-vm #171 NONE
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
RIP: 0010:exc_device_not_available+0x101/0x110
Call Trace:
<TASK>
asm_exc_device_not_available+0x1a/0x20
RIP: 0010:restore_fpregs_from_fpstate+0x36/0x90
switch_fpu_return+0x4a/0xb0
kvm_arch_vcpu_ioctl_run+0x1245/0x1e40 [kvm]
kvm_vcpu_ioctl+0x2c3/0x8f0 [kvm]
__x64_sys_ioctl+0x8f/0xd0
do_syscall_64+0x62/0x940
entry_SYSCALL_64_after_hwframe+0x4b/0x53
</TASK>
---[ end trace 0000000000000000 ]---
This can happen if the guest executes WRMSR(MSR_IA32_XFD) to set XFD[18] = 1,
and a host IRQ triggers kernel_fpu_begin() prior to the vmexit handler's
call to fpu_update_guest_xfd().
and if userspace stuffs XSTATE_BV[i]=1 via KVM_SET_XSAVE:
------------[ cut here ]------------
WARNING: arch/x86/kernel/traps.c:1524 at exc_device_not_available+0x101/0x110, CPU#14: amx_test/867
Modules linked in: kvm_intel kvm irqbypass
CPU: 14 UID: 1000 PID: 867 Comm: amx_test Not tainted 6.19.0-rc2-2dace9faccd6-x86_amx_nm_xfd_non_init-vm #168 NONE
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
RIP: 0010:exc_device_not_available+0x101/0x110
Call Trace:
<TASK>
asm_exc_device_not_available+0x1a/0x20
RIP: 0010:restore_fpregs_from_fpstate+0x36/0x90
fpu_swap_kvm_fpstate+0x6b/0x120
kvm_load_guest_fpu+0x30/0x80 [kvm]
kvm_arch_vcpu_ioctl_run+0x85/0x1e40 [kvm]
kvm_vcpu_ioctl+0x2c3/0x8f0 [kvm]
__x64_sys_ioctl+0x8f/0xd0
do_syscall_64+0x62/0x940
entry_SYSCALL_64_after_hwframe+0x4b/0x53
</TASK>
---[ end trace 0000000000000000 ]---
The new behavior is consistent with the AMX architecture. Per Intel's SDM,
XSAVE saves XSTATE_BV as '0' for components that are disabled via XFD
(and non-compacted XSAVE saves the initial configuration of the state
component):
If XSAVE, XSAVEC, XSAVEOPT, or XSAVES is saving the state component i,
the instruction does not generate #NM when XCR0[i] = IA32_XFD[i] = 1;
instead, it operates as if XINUSE[i] = 0 (and the state component was
in its initial state): it saves bit i of XSTATE_BV field of the XSAVE
header as 0; in addition, XSAVE saves the initial configuration of the
state component (the other instructions do not save state component i).
Alternatively, KVM could always do XRSTOR with XFD=0, e.g. by using
a constant XFD based on the set of enabled features when XSAVEing for
a struct fpu_guest. However, having XSTATE_BV[i]=1 for XFD-disabled
features can only happen in the above interrupt case, or in similar
scenarios involving preemption on preemptible kernels, because
fpu_swap_kvm_fpstate()'s call to save_fpregs_to_fpstate() saves the
outgoing FPU state with the current XFD; and that is (on all but the
first WRMSR to XFD) the guest XFD.
Therefore, XFD can only go out of sync with XSTATE_BV in the above
interrupt case, or in similar scenarios involving preemption on
preemptible kernels, and it we can consider it (de facto) part of KVM
ABI that KVM_GET_XSAVE returns XSTATE_BV[i]=0 for XFD-disabled features.
[Move clea
---truncated--- |
| The binary serving the web server and executing basically all actions launched from the Web UI is running with root privileges. This is against the least privilege principle. If an attacker is able to execute code on the system via other vulnerabilities it is possible to directly execute commands with highest privileges. |
| The dormakaba registration units 9002 (PIN Pad Units) have an exposed UART header on the backside. The PIN pad is sending every button press to the UART interface. An attacker can use the interface to exfiltrate PINs. As the devices are explicitly built as Plug-and-Play to be easily replaced, an attacker is easily able to remove the device, install a hardware implant which connects to the UART and exfiltrates the data exposed via UART to another system (e.g. via WiFi). |
| Incorrect access control in the selectDept function of RuoYi v4.8.2 allows unauthorized attackers to arbitrarily access sensitive department data. |
| Single Sign-On Portal System developed by WellChoose has a Reflected Cross-site Scripting vulnerability, allowing authenticated remote attackers to execute arbitrary JavaScript codes in user's browser through phishing attacks. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Don't store mlx5e_priv in mlx5e_dev devlink priv
mlx5e_priv is an unstable structure that can be memset(0) if profile
attaching fails, mlx5e_priv in mlx5e_dev devlink private is used to
reference the netdev and mdev associated with that struct. Instead,
store netdev directly into mlx5e_dev and get mdev from the containing
mlx5_adev aux device structure.
This fixes a kernel oops in mlx5e_remove when switchdev mode fails due
to change profile failure.
$ devlink dev eswitch set pci/0000:00:03.0 mode switchdev
Error: mlx5_core: Failed setting eswitch to offloads.
dmesg:
workqueue: Failed to create a rescuer kthread for wq "mlx5e": -EINTR
mlx5_core 0012:03:00.1: mlx5e_netdev_init_profile:6214:(pid 37199): mlx5e_priv_init failed, err=-12
mlx5_core 0012:03:00.1 gpu3rdma1: mlx5e_netdev_change_profile: new profile init failed, -12
workqueue: Failed to create a rescuer kthread for wq "mlx5e": -EINTR
mlx5_core 0012:03:00.1: mlx5e_netdev_init_profile:6214:(pid 37199): mlx5e_priv_init failed, err=-12
mlx5_core 0012:03:00.1 gpu3rdma1: mlx5e_netdev_change_profile: failed to rollback to orig profile, -12
$ devlink dev reload pci/0000:00:03.0 ==> oops
BUG: kernel NULL pointer dereference, address: 0000000000000520
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: Oops: 0000 [#1] SMP NOPTI
CPU: 3 UID: 0 PID: 521 Comm: devlink Not tainted 6.18.0-rc5+ #117 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-2.fc40 04/01/2014
RIP: 0010:mlx5e_remove+0x68/0x130
RSP: 0018:ffffc900034838f0 EFLAGS: 00010246
RAX: ffff88810283c380 RBX: ffff888101874400 RCX: ffffffff826ffc45
RDX: 0000000000000000 RSI: 0000000000000001 RDI: 0000000000000000
RBP: ffff888102d789c0 R08: ffff8881007137f0 R09: ffff888100264e10
R10: ffffc90003483898 R11: ffffc900034838a0 R12: ffff888100d261a0
R13: ffff888100d261a0 R14: ffff8881018749a0 R15: ffff888101874400
FS: 00007f8565fea740(0000) GS:ffff88856a759000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000520 CR3: 000000010b11a004 CR4: 0000000000370ef0
Call Trace:
<TASK>
device_release_driver_internal+0x19c/0x200
bus_remove_device+0xc6/0x130
device_del+0x160/0x3d0
? devl_param_driverinit_value_get+0x2d/0x90
mlx5_detach_device+0x89/0xe0
mlx5_unload_one_devl_locked+0x3a/0x70
mlx5_devlink_reload_down+0xc8/0x220
devlink_reload+0x7d/0x260
devlink_nl_reload_doit+0x45b/0x5a0
genl_family_rcv_msg_doit+0xe8/0x140 |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: tlv320adcx140: fix null pointer
The "snd_soc_component" in "adcx140_priv" was only used once but never
set. It was only used for reaching "dev" which is already present in
"adcx140_priv". |
| Deep Instinct Windows Agent 1.2.24.0 contains an unquoted service path vulnerability in the DeepNetworkService that allows local users to potentially execute code with elevated privileges. Attackers can exploit the unquoted path in C:\Program Files\HP Sure Sense\DeepNetworkService.exe to inject malicious code that would execute with LocalSystem permissions during service startup. |
| Vulnerability in Altitude Authentication Service and Altitude Communication Server v8.5.3290.0 by Altitude, where manipulation of Host header in HTTP requests allows redirection to an arbitrary URL or modification of the base URL to trick the victim into sending login credentials to a malicious website. This behavior can be used to redirect clients to endpoints controlled by the attacker. |
| Click2Magic 1.1.5 contains a stored cross-site scripting vulnerability that allows attackers to inject malicious scripts in the chat name input. Attackers can craft a malicious payload in the chat name to capture administrator cookies when the admin processes user requests. |
| Single Sign-On Portal System developed by WellChoose has a OS Command Injection vulnerability, allowing authenticated remote attackers to inject arbitrary OS commands and execute them on the server. |
| A Heap-based Buffer Overflow vulnerability affecting the EPRT file reading procedure in SOLIDWORKS eDrawings from Release SOLIDWORKS 2025 through Release SOLIDWORKS 2026 could allow an attacker to execute arbitrary code while opening a specially crafted EPRT file. |
| An Out-Of-Bounds Write vulnerability affecting the EPRT file reading procedure in SOLIDWORKS eDrawings from Release SOLIDWORKS 2025 through Release SOLIDWORKS 2026 could allow an attacker to execute arbitrary code while opening a specially crafted EPRT file. |
| With physical access to the device and enough time an attacker can desolder the flash memory, modify it and then reinstall it because of missing encryption. Thus, essential files, such as "/etc/passwd", as well as stored certificates, cryptographic keys, stored PINs and so on can be modified and read, in order to gain SSH root access on the Linux-based K7 model. On the Windows CE based K5 model, the password for the Access Manager can additionally be read in plain text from the stored SQLite database. |
| MyBB Thread Redirect Plugin 0.2.1 contains a cross-site scripting vulnerability in the custom text input field for thread redirects. Attackers can inject malicious SVG scripts that will execute when other users view the thread, allowing arbitrary script execution. |
| MyBB Trending Widget Plugin 1.2 contains a cross-site scripting vulnerability that allows attackers to inject malicious scripts through thread titles. Attackers can modify thread titles with script payloads that will execute when other users view the trending widget. |
| HTC IPTInstaller 4.0.9 contains an unquoted service path vulnerability in the PassThru Service configuration. Attackers can exploit the unquoted binary path to inject and execute malicious code with elevated LocalSystem privileges. |
| KMSpico 17.1.0.0 contains an unquoted service path vulnerability in the Service KMSELDI configuration that allows local attackers to potentially execute arbitrary code. Attackers can exploit the unquoted binary path in C:\Program Files\KMSpico\Service_KMS.exe to inject malicious executables and escalate privileges. |
| dataSIMS Avionics ARINC 664-1 version 4.5.3 contains a local buffer overflow vulnerability that allows attackers to overwrite memory by manipulating the milstd1553result.txt file. Attackers can craft a malicious file with carefully constructed payload and alignment sections to potentially execute arbitrary code on the Windows system. |