| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_sync: fix race in hci_cmd_sync_dequeue_once
hci_cmd_sync_dequeue_once() does lookup and then cancel
the entry under two separate lock sections. Meanwhile,
hci_cmd_sync_work() can also delete the same entry,
leading to double list_del() and "UAF".
Fix this by holding cmd_sync_work_lock across both
lookup and cancel, so that the entry cannot be removed
concurrently. |
| In the Linux kernel, the following vulnerability has been resolved:
s390/vfio-ap: fix memory leak in vfio_ap device driver
The device release callback function invoked to release the matrix device
uses the dev_get_drvdata(device *dev) function to retrieve the
pointer to the vfio_matrix_dev object in order to free its storage. The
problem is, this object is not stored as drvdata with the device; since the
kfree function will accept a NULL pointer, the memory for the
vfio_matrix_dev object is never freed.
Since the device being released is contained within the vfio_matrix_dev
object, the container_of macro will be used to retrieve its pointer. |
| In the Linux kernel, the following vulnerability has been resolved:
jfs: Verify inode mode when loading from disk
The inode mode loaded from corrupted disk can be invalid. Do like what
commit 0a9e74051313 ("isofs: Verify inode mode when loading from disk")
does. |
| In the Linux kernel, the following vulnerability has been resolved:
soc: ti: pm33xx: Fix refcount leak in am33xx_pm_probe
wkup_m3_ipc_get() takes refcount, which should be freed by
wkup_m3_ipc_put(). Add missing refcount release in the error paths. |
| In the Linux kernel, the following vulnerability has been resolved:
fbcon: Set fb_display[i]->mode to NULL when the mode is released
Recently, we discovered the following issue through syzkaller:
BUG: KASAN: slab-use-after-free in fb_mode_is_equal+0x285/0x2f0
Read of size 4 at addr ff11000001b3c69c by task syz.xxx
...
Call Trace:
<TASK>
dump_stack_lvl+0xab/0xe0
print_address_description.constprop.0+0x2c/0x390
print_report+0xb9/0x280
kasan_report+0xb8/0xf0
fb_mode_is_equal+0x285/0x2f0
fbcon_mode_deleted+0x129/0x180
fb_set_var+0xe7f/0x11d0
do_fb_ioctl+0x6a0/0x750
fb_ioctl+0xe0/0x140
__x64_sys_ioctl+0x193/0x210
do_syscall_64+0x5f/0x9c0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
Based on experimentation and analysis, during framebuffer unregistration,
only the memory of fb_info->modelist is freed, without setting the
corresponding fb_display[i]->mode to NULL for the freed modes. This leads
to UAF issues during subsequent accesses. Here's an example of reproduction
steps:
1. With /dev/fb0 already registered in the system, load a kernel module
to register a new device /dev/fb1;
2. Set fb1's mode to the global fb_display[] array (via FBIOPUT_CON2FBMAP);
3. Switch console from fb to VGA (to allow normal rmmod of the ko);
4. Unload the kernel module, at this point fb1's modelist is freed, leaving
a wild pointer in fb_display[];
5. Trigger the bug via system calls through fb0 attempting to delete a mode
from fb0.
Add a check in do_unregister_framebuffer(): if the mode to be freed exists
in fb_display[], set the corresponding mode pointer to NULL. |
| In the Linux kernel, the following vulnerability has been resolved:
net: deal with integer overflows in kmalloc_reserve()
Blamed commit changed:
ptr = kmalloc(size);
if (ptr)
size = ksize(ptr);
size = kmalloc_size_roundup(size);
ptr = kmalloc(size);
This allowed various crash as reported by syzbot [1]
and Kyle Zeng.
Problem is that if @size is bigger than 0x80000001,
kmalloc_size_roundup(size) returns 2^32.
kmalloc_reserve() uses a 32bit variable (obj_size),
so 2^32 is truncated to 0.
kmalloc(0) returns ZERO_SIZE_PTR which is not handled by
skb allocations.
Following trace can be triggered if a netdev->mtu is set
close to 0x7fffffff
We might in the future limit netdev->mtu to more sensible
limit (like KMALLOC_MAX_SIZE).
This patch is based on a syzbot report, and also a report
and tentative fix from Kyle Zeng.
[1]
BUG: KASAN: user-memory-access in __build_skb_around net/core/skbuff.c:294 [inline]
BUG: KASAN: user-memory-access in __alloc_skb+0x3c4/0x6e8 net/core/skbuff.c:527
Write of size 32 at addr 00000000fffffd10 by task syz-executor.4/22554
CPU: 1 PID: 22554 Comm: syz-executor.4 Not tainted 6.1.39-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/03/2023
Call trace:
dump_backtrace+0x1c8/0x1f4 arch/arm64/kernel/stacktrace.c:279
show_stack+0x2c/0x3c arch/arm64/kernel/stacktrace.c:286
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x120/0x1a0 lib/dump_stack.c:106
print_report+0xe4/0x4b4 mm/kasan/report.c:398
kasan_report+0x150/0x1ac mm/kasan/report.c:495
kasan_check_range+0x264/0x2a4 mm/kasan/generic.c:189
memset+0x40/0x70 mm/kasan/shadow.c:44
__build_skb_around net/core/skbuff.c:294 [inline]
__alloc_skb+0x3c4/0x6e8 net/core/skbuff.c:527
alloc_skb include/linux/skbuff.h:1316 [inline]
igmpv3_newpack+0x104/0x1088 net/ipv4/igmp.c:359
add_grec+0x81c/0x1124 net/ipv4/igmp.c:534
igmpv3_send_cr net/ipv4/igmp.c:667 [inline]
igmp_ifc_timer_expire+0x1b0/0x1008 net/ipv4/igmp.c:810
call_timer_fn+0x1c0/0x9f0 kernel/time/timer.c:1474
expire_timers kernel/time/timer.c:1519 [inline]
__run_timers+0x54c/0x710 kernel/time/timer.c:1790
run_timer_softirq+0x28/0x4c kernel/time/timer.c:1803
_stext+0x380/0xfbc
____do_softirq+0x14/0x20 arch/arm64/kernel/irq.c:79
call_on_irq_stack+0x24/0x4c arch/arm64/kernel/entry.S:891
do_softirq_own_stack+0x20/0x2c arch/arm64/kernel/irq.c:84
invoke_softirq kernel/softirq.c:437 [inline]
__irq_exit_rcu+0x1c0/0x4cc kernel/softirq.c:683
irq_exit_rcu+0x14/0x78 kernel/softirq.c:695
el0_interrupt+0x7c/0x2e0 arch/arm64/kernel/entry-common.c:717
__el0_irq_handler_common+0x18/0x24 arch/arm64/kernel/entry-common.c:724
el0t_64_irq_handler+0x10/0x1c arch/arm64/kernel/entry-common.c:729
el0t_64_irq+0x1a0/0x1a4 arch/arm64/kernel/entry.S:584 |
| In the Linux kernel, the following vulnerability has been resolved:
PCI: Free released resource after coalescing
release_resource() doesn't actually free the resource or resource list
entry so free the resource list entry to avoid a leak. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_sync: Fix UAF in hci_disconnect_all_sync
Use-after-free can occur in hci_disconnect_all_sync if a connection is
deleted by concurrent processing of a controller event.
To prevent this the code now tries to iterate over the list backwards
to ensure the links are cleanup before its parents, also it no longer
relies on a cursor, instead it always uses the last element since
hci_abort_conn_sync is guaranteed to call hci_conn_del.
UAF crash log:
==================================================================
BUG: KASAN: slab-use-after-free in hci_set_powered_sync
(net/bluetooth/hci_sync.c:5424) [bluetooth]
Read of size 8 at addr ffff888009d9c000 by task kworker/u9:0/124
CPU: 0 PID: 124 Comm: kworker/u9:0 Tainted: G W
6.5.0-rc1+ #10
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS
1.16.2-1.fc38 04/01/2014
Workqueue: hci0 hci_cmd_sync_work [bluetooth]
Call Trace:
<TASK>
dump_stack_lvl+0x5b/0x90
print_report+0xcf/0x670
? __virt_addr_valid+0xdd/0x160
? hci_set_powered_sync+0x2c9/0x4a0 [bluetooth]
kasan_report+0xa6/0xe0
? hci_set_powered_sync+0x2c9/0x4a0 [bluetooth]
? __pfx_set_powered_sync+0x10/0x10 [bluetooth]
hci_set_powered_sync+0x2c9/0x4a0 [bluetooth]
? __pfx_hci_set_powered_sync+0x10/0x10 [bluetooth]
? __pfx_lock_release+0x10/0x10
? __pfx_set_powered_sync+0x10/0x10 [bluetooth]
hci_cmd_sync_work+0x137/0x220 [bluetooth]
process_one_work+0x526/0x9d0
? __pfx_process_one_work+0x10/0x10
? __pfx_do_raw_spin_lock+0x10/0x10
? mark_held_locks+0x1a/0x90
worker_thread+0x92/0x630
? __pfx_worker_thread+0x10/0x10
kthread+0x196/0x1e0
? __pfx_kthread+0x10/0x10
ret_from_fork+0x2c/0x50
</TASK>
Allocated by task 1782:
kasan_save_stack+0x33/0x60
kasan_set_track+0x25/0x30
__kasan_kmalloc+0x8f/0xa0
hci_conn_add+0xa5/0xa80 [bluetooth]
hci_bind_cis+0x881/0x9b0 [bluetooth]
iso_connect_cis+0x121/0x520 [bluetooth]
iso_sock_connect+0x3f6/0x790 [bluetooth]
__sys_connect+0x109/0x130
__x64_sys_connect+0x40/0x50
do_syscall_64+0x60/0x90
entry_SYSCALL_64_after_hwframe+0x6e/0xd8
Freed by task 695:
kasan_save_stack+0x33/0x60
kasan_set_track+0x25/0x30
kasan_save_free_info+0x2b/0x50
__kasan_slab_free+0x10a/0x180
__kmem_cache_free+0x14d/0x2e0
device_release+0x5d/0xf0
kobject_put+0xdf/0x270
hci_disconn_complete_evt+0x274/0x3a0 [bluetooth]
hci_event_packet+0x579/0x7e0 [bluetooth]
hci_rx_work+0x287/0xaa0 [bluetooth]
process_one_work+0x526/0x9d0
worker_thread+0x92/0x630
kthread+0x196/0x1e0
ret_from_fork+0x2c/0x50
================================================================== |
| In the Linux kernel, the following vulnerability has been resolved:
FS: JFS: Check for read-only mounted filesystem in txBegin
This patch adds a check for read-only mounted filesystem
in txBegin before starting a transaction potentially saving
from NULL pointer deref. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: usbtmc: Fix direction for 0-length ioctl control messages
The syzbot fuzzer found a problem in the usbtmc driver: When a user
submits an ioctl for a 0-length control transfer, the driver does not
check that the direction is set to OUT:
------------[ cut here ]------------
usb 3-1: BOGUS control dir, pipe 80000b80 doesn't match bRequestType fd
WARNING: CPU: 0 PID: 5100 at drivers/usb/core/urb.c:411 usb_submit_urb+0x14a7/0x1880 drivers/usb/core/urb.c:411
Modules linked in:
CPU: 0 PID: 5100 Comm: syz-executor428 Not tainted 6.3.0-syzkaller-12049-g58390c8ce1bd #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 04/14/2023
RIP: 0010:usb_submit_urb+0x14a7/0x1880 drivers/usb/core/urb.c:411
Code: 7c 24 40 e8 1b 13 5c fb 48 8b 7c 24 40 e8 21 1d f0 fe 45 89 e8 44 89 f1 4c 89 e2 48 89 c6 48 c7 c7 e0 b5 fc 8a e8 19 c8 23 fb <0f> 0b e9 9f ee ff ff e8 ed 12 5c fb 0f b6 1d 12 8a 3c 08 31 ff 41
RSP: 0018:ffffc90003d2fb00 EFLAGS: 00010282
RAX: 0000000000000000 RBX: ffff8880789e9058 RCX: 0000000000000000
RDX: ffff888029593b80 RSI: ffffffff814c1447 RDI: 0000000000000001
RBP: ffff88801ea742f8 R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000001 R11: 0000000000000001 R12: ffff88802915e528
R13: 00000000000000fd R14: 0000000080000b80 R15: ffff8880222b3100
FS: 0000555556ca63c0(0000) GS:ffff8880b9800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f9ef4d18150 CR3: 0000000073e5b000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
usb_start_wait_urb+0x101/0x4b0 drivers/usb/core/message.c:58
usb_internal_control_msg drivers/usb/core/message.c:102 [inline]
usb_control_msg+0x320/0x4a0 drivers/usb/core/message.c:153
usbtmc_ioctl_request drivers/usb/class/usbtmc.c:1954 [inline]
usbtmc_ioctl+0x1b3d/0x2840 drivers/usb/class/usbtmc.c:2097
To fix this, we must override the direction in the bRequestType field
of the control request structure when the length is 0. |
| In the Linux kernel, the following vulnerability has been resolved:
dm cache: free background tracker's queued work in btracker_destroy
Otherwise the kernel can BUG with:
[ 2245.426978] =============================================================================
[ 2245.435155] BUG bt_work (Tainted: G B W ): Objects remaining in bt_work on __kmem_cache_shutdown()
[ 2245.445233] -----------------------------------------------------------------------------
[ 2245.445233]
[ 2245.454879] Slab 0x00000000b0ce2b30 objects=64 used=2 fp=0x000000000a3c6a4e flags=0x17ffffc0000200(slab|node=0|zone=2|lastcpupid=0x1fffff)
[ 2245.467300] CPU: 7 PID: 10805 Comm: lvm Kdump: loaded Tainted: G B W 6.0.0-rc2 #19
[ 2245.476078] Hardware name: Dell Inc. PowerEdge R7525/0590KW, BIOS 2.5.6 10/06/2021
[ 2245.483646] Call Trace:
[ 2245.486100] <TASK>
[ 2245.488206] dump_stack_lvl+0x34/0x48
[ 2245.491878] slab_err+0x95/0xcd
[ 2245.495028] __kmem_cache_shutdown.cold+0x31/0x136
[ 2245.499821] kmem_cache_destroy+0x49/0x130
[ 2245.503928] btracker_destroy+0x12/0x20 [dm_cache]
[ 2245.508728] smq_destroy+0x15/0x60 [dm_cache_smq]
[ 2245.513435] dm_cache_policy_destroy+0x12/0x20 [dm_cache]
[ 2245.518834] destroy+0xc0/0x110 [dm_cache]
[ 2245.522933] dm_table_destroy+0x5c/0x120 [dm_mod]
[ 2245.527649] __dm_destroy+0x10e/0x1c0 [dm_mod]
[ 2245.532102] dev_remove+0x117/0x190 [dm_mod]
[ 2245.536384] ctl_ioctl+0x1a2/0x290 [dm_mod]
[ 2245.540579] dm_ctl_ioctl+0xa/0x20 [dm_mod]
[ 2245.544773] __x64_sys_ioctl+0x8a/0xc0
[ 2245.548524] do_syscall_64+0x5c/0x90
[ 2245.552104] ? syscall_exit_to_user_mode+0x12/0x30
[ 2245.556897] ? do_syscall_64+0x69/0x90
[ 2245.560648] ? do_syscall_64+0x69/0x90
[ 2245.564394] entry_SYSCALL_64_after_hwframe+0x63/0xcd
[ 2245.569447] RIP: 0033:0x7fe52583ec6b
...
[ 2245.646771] ------------[ cut here ]------------
[ 2245.651395] kmem_cache_destroy bt_work: Slab cache still has objects when called from btracker_destroy+0x12/0x20 [dm_cache]
[ 2245.651408] WARNING: CPU: 7 PID: 10805 at mm/slab_common.c:478 kmem_cache_destroy+0x128/0x130
Found using: lvm2-testsuite --only "cache-single-split.sh"
Ben bisected and found that commit 0495e337b703 ("mm/slab_common:
Deleting kobject in kmem_cache_destroy() without holding
slab_mutex/cpu_hotplug_lock") first exposed dm-cache's incomplete
cleanup of its background tracker work objects. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/mediatek: Fix device use-after-free on unbind
A recent change fixed device reference leaks when looking up drm
platform device driver data during bind() but failed to remove a partial
fix which had been added by commit 80805b62ea5b ("drm/mediatek: Fix
kobject put for component sub-drivers").
This results in a reference imbalance on component bind() failures and
on unbind() which could lead to a user-after-free.
Make sure to only drop the references after retrieving the driver data
by effectively reverting the previous partial fix.
Note that holding a reference to a device does not prevent its driver
data from going away so there is no point in keeping the reference. |
| In the Linux kernel, the following vulnerability has been resolved:
vc_screen: reload load of struct vc_data pointer in vcs_write() to avoid UAF
After a call to console_unlock() in vcs_write() the vc_data struct can be
freed by vc_port_destruct(). Because of that, the struct vc_data pointer
must be reloaded in the while loop in vcs_write() after console_lock() to
avoid a UAF when vcs_size() is called.
Syzkaller reported a UAF in vcs_size().
BUG: KASAN: slab-use-after-free in vcs_size (drivers/tty/vt/vc_screen.c:215)
Read of size 4 at addr ffff8880beab89a8 by task repro_vcs_size/4119
Call Trace:
<TASK>
__asan_report_load4_noabort (mm/kasan/report_generic.c:380)
vcs_size (drivers/tty/vt/vc_screen.c:215)
vcs_write (drivers/tty/vt/vc_screen.c:664)
vfs_write (fs/read_write.c:582 fs/read_write.c:564)
...
<TASK>
Allocated by task 1213:
kmalloc_trace (mm/slab_common.c:1064)
vc_allocate (./include/linux/slab.h:559 ./include/linux/slab.h:680
drivers/tty/vt/vt.c:1078 drivers/tty/vt/vt.c:1058)
con_install (drivers/tty/vt/vt.c:3334)
tty_init_dev (drivers/tty/tty_io.c:1303 drivers/tty/tty_io.c:1415
drivers/tty/tty_io.c:1392)
tty_open (drivers/tty/tty_io.c:2082 drivers/tty/tty_io.c:2128)
chrdev_open (fs/char_dev.c:415)
do_dentry_open (fs/open.c:921)
vfs_open (fs/open.c:1052)
...
Freed by task 4116:
kfree (mm/slab_common.c:1016)
vc_port_destruct (drivers/tty/vt/vt.c:1044)
tty_port_destructor (drivers/tty/tty_port.c:296)
tty_port_put (drivers/tty/tty_port.c:312)
vt_disallocate_all (drivers/tty/vt/vt_ioctl.c:662 (discriminator 2))
vt_ioctl (drivers/tty/vt/vt_ioctl.c:903)
tty_ioctl (drivers/tty/tty_io.c:2778)
...
The buggy address belongs to the object at ffff8880beab8800
which belongs to the cache kmalloc-1k of size 1024
The buggy address is located 424 bytes inside of
freed 1024-byte region [ffff8880beab8800, ffff8880beab8c00)
The buggy address belongs to the physical page:
page:00000000afc77580 refcount:1 mapcount:0 mapping:0000000000000000
index:0x0 pfn:0xbeab8
head:00000000afc77580 order:3 entire_mapcount:0 nr_pages_mapped:0
pincount:0
flags: 0xfffffc0010200(slab|head|node=0|zone=1|lastcpupid=0x1fffff)
page_type: 0xffffffff()
raw: 000fffffc0010200 ffff888100042dc0 ffffea000426de00 dead000000000002
raw: 0000000000000000 0000000000100010 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff8880beab8880: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff8880beab8900: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
>ffff8880beab8980: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
^
ffff8880beab8a00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff8880beab8a80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
==================================================================
Disabling lock debugging due to kernel taint |
| In the Linux kernel, the following vulnerability has been resolved:
9p/trans_fd: p9_fd_request: kick rx thread if EPOLLIN
p9_read_work() doesn't set Rworksched and doesn't do schedule_work(m->rq)
if list_empty(&m->req_list).
However, if the pipe is full, we need to read more data and this used to
work prior to commit aaec5a95d59615 ("pipe_read: don't wake up the writer
if the pipe is still full").
p9_read_work() does p9_fd_read() -> ... -> anon_pipe_read() which (before
the commit above) triggered the unnecessary wakeup. This wakeup calls
p9_pollwake() which kicks p9_poll_workfn() -> p9_poll_mux(), p9_poll_mux()
will notice EPOLLIN and schedule_work(&m->rq).
This no longer happens after the optimization above, change p9_fd_request()
to use p9_poll_mux() instead of only checking for EPOLLOUT. |
| In the Linux kernel, the following vulnerability has been resolved:
pinctrl: freescale: Fix a memory out of bounds when num_configs is 1
The config passed in by pad wakeup is 1, when num_configs is 1,
Configuration [1] should not be fetched, which will be detected
by KASAN as a memory out of bounds condition. Modify to get
configs[1] when num_configs is 2. |
| In the Linux kernel, the following vulnerability has been resolved:
regmap: slimbus: fix bus_context pointer in regmap init calls
Commit 4e65bda8273c ("ASoC: wcd934x: fix error handling in
wcd934x_codec_parse_data()") revealed the problem in the slimbus regmap.
That commit breaks audio playback, for instance, on sdm845 Thundercomm
Dragonboard 845c board:
Unable to handle kernel paging request at virtual address ffff8000847cbad4
...
CPU: 5 UID: 0 PID: 776 Comm: aplay Not tainted 6.18.0-rc1-00028-g7ea30958b305 #11 PREEMPT
Hardware name: Thundercomm Dragonboard 845c (DT)
...
Call trace:
slim_xfer_msg+0x24/0x1ac [slimbus] (P)
slim_read+0x48/0x74 [slimbus]
regmap_slimbus_read+0x18/0x24 [regmap_slimbus]
_regmap_raw_read+0xe8/0x174
_regmap_bus_read+0x44/0x80
_regmap_read+0x60/0xd8
_regmap_update_bits+0xf4/0x140
_regmap_select_page+0xa8/0x124
_regmap_raw_write_impl+0x3b8/0x65c
_regmap_bus_raw_write+0x60/0x80
_regmap_write+0x58/0xc0
regmap_write+0x4c/0x80
wcd934x_hw_params+0x494/0x8b8 [snd_soc_wcd934x]
snd_soc_dai_hw_params+0x3c/0x7c [snd_soc_core]
__soc_pcm_hw_params+0x22c/0x634 [snd_soc_core]
dpcm_be_dai_hw_params+0x1d4/0x38c [snd_soc_core]
dpcm_fe_dai_hw_params+0x9c/0x17c [snd_soc_core]
snd_pcm_hw_params+0x124/0x464 [snd_pcm]
snd_pcm_common_ioctl+0x110c/0x1820 [snd_pcm]
snd_pcm_ioctl+0x34/0x4c [snd_pcm]
__arm64_sys_ioctl+0xac/0x104
invoke_syscall+0x48/0x104
el0_svc_common.constprop.0+0x40/0xe0
do_el0_svc+0x1c/0x28
el0_svc+0x34/0xec
el0t_64_sync_handler+0xa0/0xf0
el0t_64_sync+0x198/0x19c
The __devm_regmap_init_slimbus() started to be used instead of
__regmap_init_slimbus() after the commit mentioned above and turns out
the incorrect bus_context pointer (3rd argument) was used in
__devm_regmap_init_slimbus(). It should be just "slimbus" (which is equal
to &slimbus->dev). Correct it. The wcd934x codec seems to be the only or
the first user of devm_regmap_init_slimbus() but we should fix it till
the point where __devm_regmap_init_slimbus() was introduced therefore
two "Fixes" tags.
While at this, also correct the same argument in __regmap_init_slimbus(). |
| In the Linux kernel, the following vulnerability has been resolved:
Revert "f2fs: fix to do sanity check on extent cache correctly"
syzbot reports a f2fs bug as below:
UBSAN: array-index-out-of-bounds in fs/f2fs/f2fs.h:3275:19
index 1409 is out of range for type '__le32[923]' (aka 'unsigned int[923]')
Call Trace:
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x1e7/0x2d0 lib/dump_stack.c:106
ubsan_epilogue lib/ubsan.c:217 [inline]
__ubsan_handle_out_of_bounds+0x11c/0x150 lib/ubsan.c:348
inline_data_addr fs/f2fs/f2fs.h:3275 [inline]
__recover_inline_status fs/f2fs/inode.c:113 [inline]
do_read_inode fs/f2fs/inode.c:480 [inline]
f2fs_iget+0x4730/0x48b0 fs/f2fs/inode.c:604
f2fs_fill_super+0x640e/0x80c0 fs/f2fs/super.c:4601
mount_bdev+0x276/0x3b0 fs/super.c:1391
legacy_get_tree+0xef/0x190 fs/fs_context.c:611
vfs_get_tree+0x8c/0x270 fs/super.c:1519
do_new_mount+0x28f/0xae0 fs/namespace.c:3335
do_mount fs/namespace.c:3675 [inline]
__do_sys_mount fs/namespace.c:3884 [inline]
__se_sys_mount+0x2d9/0x3c0 fs/namespace.c:3861
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
The issue was bisected to:
commit d48a7b3a72f121655d95b5157c32c7d555e44c05
Author: Chao Yu <chao@kernel.org>
Date: Mon Jan 9 03:49:20 2023 +0000
f2fs: fix to do sanity check on extent cache correctly
The root cause is we applied both v1 and v2 of the patch, v2 is the right
fix, so it needs to revert v1 in order to fix reported issue.
v1:
commit d48a7b3a72f1 ("f2fs: fix to do sanity check on extent cache correctly")
https://lore.kernel.org/lkml/20230109034920.492914-1-chao@kernel.org/
v2:
commit 269d11948100 ("f2fs: fix to do sanity check on extent cache correctly")
https://lore.kernel.org/lkml/20230207134808.1827869-1-chao@kernel.org/ |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: ptdma: check for null desc before calling pt_cmd_callback
Resolves a panic that can occur on AMD systems, typically during host
shutdown, after the PTDMA driver had been exercised. The issue was
the pt_issue_pending() function is mistakenly assuming that there will
be at least one descriptor in the Submitted queue when the function
is called. However, it is possible that both the Submitted and Issued
queues could be empty, which could result in pt_cmd_callback() being
mistakenly called with a NULL pointer.
Ref: Bugzilla Bug 216856. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: VMX: Fix crash due to uninitialized current_vmcs
KVM enables 'Enlightened VMCS' and 'Enlightened MSR Bitmap' when running as
a nested hypervisor on top of Hyper-V. When MSR bitmap is updated,
evmcs_touch_msr_bitmap function uses current_vmcs per-cpu variable to mark
that the msr bitmap was changed.
vmx_vcpu_create() modifies the msr bitmap via vmx_disable_intercept_for_msr
-> vmx_msr_bitmap_l01_changed which in the end calls this function. The
function checks for current_vmcs if it is null but the check is
insufficient because current_vmcs is not initialized. Because of this, the
code might incorrectly write to the structure pointed by current_vmcs value
left by another task. Preemption is not disabled, the current task can be
preempted and moved to another CPU while current_vmcs is accessed multiple
times from evmcs_touch_msr_bitmap() which leads to crash.
The manipulation of MSR bitmaps by callers happens only for vmcs01 so the
solution is to use vmx->vmcs01.vmcs instead of current_vmcs.
BUG: kernel NULL pointer dereference, address: 0000000000000338
PGD 4e1775067 P4D 0
Oops: 0002 [#1] PREEMPT SMP NOPTI
...
RIP: 0010:vmx_msr_bitmap_l01_changed+0x39/0x50 [kvm_intel]
...
Call Trace:
vmx_disable_intercept_for_msr+0x36/0x260 [kvm_intel]
vmx_vcpu_create+0xe6/0x540 [kvm_intel]
kvm_arch_vcpu_create+0x1d1/0x2e0 [kvm]
kvm_vm_ioctl_create_vcpu+0x178/0x430 [kvm]
kvm_vm_ioctl+0x53f/0x790 [kvm]
__x64_sys_ioctl+0x8a/0xc0
do_syscall_64+0x5c/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd |
| In the Linux kernel, the following vulnerability has been resolved:
mm: hugetlb: fix UAF in hugetlb_handle_userfault
The vma_lock and hugetlb_fault_mutex are dropped before handling userfault
and reacquire them again after handle_userfault(), but reacquire the
vma_lock could lead to UAF[1,2] due to the following race,
hugetlb_fault
hugetlb_no_page
/*unlock vma_lock */
hugetlb_handle_userfault
handle_userfault
/* unlock mm->mmap_lock*/
vm_mmap_pgoff
do_mmap
mmap_region
munmap_vma_range
/* clean old vma */
/* lock vma_lock again <--- UAF */
/* unlock vma_lock */
Since the vma_lock will unlock immediately after
hugetlb_handle_userfault(), let's drop the unneeded lock and unlock in
hugetlb_handle_userfault() to fix the issue.
[1] https://lore.kernel.org/linux-mm/000000000000d5e00a05e834962e@google.com/
[2] https://lore.kernel.org/linux-mm/20220921014457.1668-1-liuzixian4@huawei.com/ |