| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: ipset: add missing range check in bitmap_ip_uadt
When tb[IPSET_ATTR_IP_TO] is not present but tb[IPSET_ATTR_CIDR] exists,
the values of ip and ip_to are slightly swapped. Therefore, the range check
for ip should be done later, but this part is missing and it seems that the
vulnerability occurs.
So we should add missing range checks and remove unnecessary range checks. |
| In the Linux kernel, the following vulnerability has been resolved:
sched/task_stack: fix object_is_on_stack() for KASAN tagged pointers
When CONFIG_KASAN_SW_TAGS and CONFIG_KASAN_STACK are enabled, the
object_is_on_stack() function may produce incorrect results due to the
presence of tags in the obj pointer, while the stack pointer does not have
tags. This discrepancy can lead to incorrect stack object detection and
subsequently trigger warnings if CONFIG_DEBUG_OBJECTS is also enabled.
Example of the warning:
ODEBUG: object 3eff800082ea7bb0 is NOT on stack ffff800082ea0000, but annotated.
------------[ cut here ]------------
WARNING: CPU: 0 PID: 1 at lib/debugobjects.c:557 __debug_object_init+0x330/0x364
Modules linked in:
CPU: 0 UID: 0 PID: 1 Comm: swapper/0 Not tainted 6.12.0-rc5 #4
Hardware name: linux,dummy-virt (DT)
pstate: 600000c5 (nZCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : __debug_object_init+0x330/0x364
lr : __debug_object_init+0x330/0x364
sp : ffff800082ea7b40
x29: ffff800082ea7b40 x28: 98ff0000c0164518 x27: 98ff0000c0164534
x26: ffff800082d93ec8 x25: 0000000000000001 x24: 1cff0000c00172a0
x23: 0000000000000000 x22: ffff800082d93ed0 x21: ffff800081a24418
x20: 3eff800082ea7bb0 x19: efff800000000000 x18: 0000000000000000
x17: 00000000000000ff x16: 0000000000000047 x15: 206b63617473206e
x14: 0000000000000018 x13: ffff800082ea7780 x12: 0ffff800082ea78e
x11: 0ffff800082ea790 x10: 0ffff800082ea79d x9 : 34d77febe173e800
x8 : 34d77febe173e800 x7 : 0000000000000001 x6 : 0000000000000001
x5 : feff800082ea74b8 x4 : ffff800082870a90 x3 : ffff80008018d3c4
x2 : 0000000000000001 x1 : ffff800082858810 x0 : 0000000000000050
Call trace:
__debug_object_init+0x330/0x364
debug_object_init_on_stack+0x30/0x3c
schedule_hrtimeout_range_clock+0xac/0x26c
schedule_hrtimeout+0x1c/0x30
wait_task_inactive+0x1d4/0x25c
kthread_bind_mask+0x28/0x98
init_rescuer+0x1e8/0x280
workqueue_init+0x1a0/0x3cc
kernel_init_freeable+0x118/0x200
kernel_init+0x28/0x1f0
ret_from_fork+0x10/0x20
---[ end trace 0000000000000000 ]---
ODEBUG: object 3eff800082ea7bb0 is NOT on stack ffff800082ea0000, but annotated.
------------[ cut here ]------------ |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: sync_linked_regs() must preserve subreg_def
Range propagation must not affect subreg_def marks, otherwise the
following example is rewritten by verifier incorrectly when
BPF_F_TEST_RND_HI32 flag is set:
0: call bpf_ktime_get_ns call bpf_ktime_get_ns
1: r0 &= 0x7fffffff after verifier r0 &= 0x7fffffff
2: w1 = w0 rewrites w1 = w0
3: if w0 < 10 goto +0 --------------> r11 = 0x2f5674a6 (r)
4: r1 >>= 32 r11 <<= 32 (r)
5: r0 = r1 r1 |= r11 (r)
6: exit; if w0 < 0xa goto pc+0
r1 >>= 32
r0 = r1
exit
(or zero extension of w1 at (2) is missing for architectures that
require zero extension for upper register half).
The following happens w/o this patch:
- r0 is marked as not a subreg at (0);
- w1 is marked as subreg at (2);
- w1 subreg_def is overridden at (3) by copy_register_state();
- w1 is read at (5) but mark_insn_zext() does not mark (2)
for zero extension, because w1 subreg_def is not set;
- because of BPF_F_TEST_RND_HI32 flag verifier inserts random
value for hi32 bits of (2) (marked (r));
- this random value is read at (5). |
| In the Linux kernel, the following vulnerability has been resolved:
net: fix data-races around sk->sk_forward_alloc
Syzkaller reported this warning:
------------[ cut here ]------------
WARNING: CPU: 0 PID: 16 at net/ipv4/af_inet.c:156 inet_sock_destruct+0x1c5/0x1e0
Modules linked in:
CPU: 0 UID: 0 PID: 16 Comm: ksoftirqd/0 Not tainted 6.12.0-rc5 #26
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
RIP: 0010:inet_sock_destruct+0x1c5/0x1e0
Code: 24 12 4c 89 e2 5b 48 c7 c7 98 ec bb 82 41 5c e9 d1 18 17 ff 4c 89 e6 5b 48 c7 c7 d0 ec bb 82 41 5c e9 bf 18 17 ff 0f 0b eb 83 <0f> 0b eb 97 0f 0b eb 87 0f 0b e9 68 ff ff ff 66 66 2e 0f 1f 84 00
RSP: 0018:ffffc9000008bd90 EFLAGS: 00010206
RAX: 0000000000000300 RBX: ffff88810b172a90 RCX: 0000000000000007
RDX: 0000000000000002 RSI: 0000000000000300 RDI: ffff88810b172a00
RBP: ffff88810b172a00 R08: ffff888104273c00 R09: 0000000000100007
R10: 0000000000020000 R11: 0000000000000006 R12: ffff88810b172a00
R13: 0000000000000004 R14: 0000000000000000 R15: ffff888237c31f78
FS: 0000000000000000(0000) GS:ffff888237c00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007ffc63fecac8 CR3: 000000000342e000 CR4: 00000000000006f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
? __warn+0x88/0x130
? inet_sock_destruct+0x1c5/0x1e0
? report_bug+0x18e/0x1a0
? handle_bug+0x53/0x90
? exc_invalid_op+0x18/0x70
? asm_exc_invalid_op+0x1a/0x20
? inet_sock_destruct+0x1c5/0x1e0
__sk_destruct+0x2a/0x200
rcu_do_batch+0x1aa/0x530
? rcu_do_batch+0x13b/0x530
rcu_core+0x159/0x2f0
handle_softirqs+0xd3/0x2b0
? __pfx_smpboot_thread_fn+0x10/0x10
run_ksoftirqd+0x25/0x30
smpboot_thread_fn+0xdd/0x1d0
kthread+0xd3/0x100
? __pfx_kthread+0x10/0x10
ret_from_fork+0x34/0x50
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30
</TASK>
---[ end trace 0000000000000000 ]---
Its possible that two threads call tcp_v6_do_rcv()/sk_forward_alloc_add()
concurrently when sk->sk_state == TCP_LISTEN with sk->sk_lock unlocked,
which triggers a data-race around sk->sk_forward_alloc:
tcp_v6_rcv
tcp_v6_do_rcv
skb_clone_and_charge_r
sk_rmem_schedule
__sk_mem_schedule
sk_forward_alloc_add()
skb_set_owner_r
sk_mem_charge
sk_forward_alloc_add()
__kfree_skb
skb_release_all
skb_release_head_state
sock_rfree
sk_mem_uncharge
sk_forward_alloc_add()
sk_mem_reclaim
// set local var reclaimable
__sk_mem_reclaim
sk_forward_alloc_add()
In this syzkaller testcase, two threads call
tcp_v6_do_rcv() with skb->truesize=768, the sk_forward_alloc changes like
this:
(cpu 1) | (cpu 2) | sk_forward_alloc
... | ... | 0
__sk_mem_schedule() | | +4096 = 4096
| __sk_mem_schedule() | +4096 = 8192
sk_mem_charge() | | -768 = 7424
| sk_mem_charge() | -768 = 6656
... | ... |
sk_mem_uncharge() | | +768 = 7424
reclaimable=7424 | |
| sk_mem_uncharge() | +768 = 8192
| reclaimable=8192 |
__sk_mem_reclaim() | | -4096 = 4096
| __sk_mem_reclaim() | -8192 = -4096 != 0
The skb_clone_and_charge_r() should not be called in tcp_v6_do_rcv() when
sk->sk_state is TCP_LISTEN, it happens later in tcp_v6_syn_recv_sock().
Fix the same issue in dccp_v6_do_rcv(). |
| In the Linux kernel, the following vulnerability has been resolved:
mm: page_alloc: move mlocked flag clearance into free_pages_prepare()
Syzbot reported a bad page state problem caused by a page being freed
using free_page() still having a mlocked flag at free_pages_prepare()
stage:
BUG: Bad page state in process syz.5.504 pfn:61f45
page: refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x61f45
flags: 0xfff00000080204(referenced|workingset|mlocked|node=0|zone=1|lastcpupid=0x7ff)
raw: 00fff00000080204 0000000000000000 dead000000000122 0000000000000000
raw: 0000000000000000 0000000000000000 00000000ffffffff 0000000000000000
page dumped because: PAGE_FLAGS_CHECK_AT_FREE flag(s) set
page_owner tracks the page as allocated
page last allocated via order 0, migratetype Unmovable, gfp_mask 0x400dc0(GFP_KERNEL_ACCOUNT|__GFP_ZERO), pid 8443, tgid 8442 (syz.5.504), ts 201884660643, free_ts 201499827394
set_page_owner include/linux/page_owner.h:32 [inline]
post_alloc_hook+0x1f3/0x230 mm/page_alloc.c:1537
prep_new_page mm/page_alloc.c:1545 [inline]
get_page_from_freelist+0x303f/0x3190 mm/page_alloc.c:3457
__alloc_pages_noprof+0x292/0x710 mm/page_alloc.c:4733
alloc_pages_mpol_noprof+0x3e8/0x680 mm/mempolicy.c:2265
kvm_coalesced_mmio_init+0x1f/0xf0 virt/kvm/coalesced_mmio.c:99
kvm_create_vm virt/kvm/kvm_main.c:1235 [inline]
kvm_dev_ioctl_create_vm virt/kvm/kvm_main.c:5488 [inline]
kvm_dev_ioctl+0x12dc/0x2240 virt/kvm/kvm_main.c:5530
__do_compat_sys_ioctl fs/ioctl.c:1007 [inline]
__se_compat_sys_ioctl+0x510/0xc90 fs/ioctl.c:950
do_syscall_32_irqs_on arch/x86/entry/common.c:165 [inline]
__do_fast_syscall_32+0xb4/0x110 arch/x86/entry/common.c:386
do_fast_syscall_32+0x34/0x80 arch/x86/entry/common.c:411
entry_SYSENTER_compat_after_hwframe+0x84/0x8e
page last free pid 8399 tgid 8399 stack trace:
reset_page_owner include/linux/page_owner.h:25 [inline]
free_pages_prepare mm/page_alloc.c:1108 [inline]
free_unref_folios+0xf12/0x18d0 mm/page_alloc.c:2686
folios_put_refs+0x76c/0x860 mm/swap.c:1007
free_pages_and_swap_cache+0x5c8/0x690 mm/swap_state.c:335
__tlb_batch_free_encoded_pages mm/mmu_gather.c:136 [inline]
tlb_batch_pages_flush mm/mmu_gather.c:149 [inline]
tlb_flush_mmu_free mm/mmu_gather.c:366 [inline]
tlb_flush_mmu+0x3a3/0x680 mm/mmu_gather.c:373
tlb_finish_mmu+0xd4/0x200 mm/mmu_gather.c:465
exit_mmap+0x496/0xc40 mm/mmap.c:1926
__mmput+0x115/0x390 kernel/fork.c:1348
exit_mm+0x220/0x310 kernel/exit.c:571
do_exit+0x9b2/0x28e0 kernel/exit.c:926
do_group_exit+0x207/0x2c0 kernel/exit.c:1088
__do_sys_exit_group kernel/exit.c:1099 [inline]
__se_sys_exit_group kernel/exit.c:1097 [inline]
__x64_sys_exit_group+0x3f/0x40 kernel/exit.c:1097
x64_sys_call+0x2634/0x2640 arch/x86/include/generated/asm/syscalls_64.h:232
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Modules linked in:
CPU: 0 UID: 0 PID: 8442 Comm: syz.5.504 Not tainted 6.12.0-rc6-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
bad_page+0x176/0x1d0 mm/page_alloc.c:501
free_page_is_bad mm/page_alloc.c:918 [inline]
free_pages_prepare mm/page_alloc.c:1100 [inline]
free_unref_page+0xed0/0xf20 mm/page_alloc.c:2638
kvm_destroy_vm virt/kvm/kvm_main.c:1327 [inline]
kvm_put_kvm+0xc75/0x1350 virt/kvm/kvm_main.c:1386
kvm_vcpu_release+0x54/0x60 virt/kvm/kvm_main.c:4143
__fput+0x23f/0x880 fs/file_table.c:431
task_work_run+0x24f/0x310 kernel/task_work.c:239
exit_task_work include/linux/task_work.h:43 [inline]
do_exit+0xa2f/0x28e0 kernel/exit.c:939
do_group_exit+0x207/0x2c0 kernel/exit.c:1088
__do_sys_exit_group kernel/exit.c:1099 [in
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Check validity of link->type in bpf_link_show_fdinfo()
If a newly-added link type doesn't invoke BPF_LINK_TYPE(), accessing
bpf_link_type_strs[link->type] may result in an out-of-bounds access.
To spot such missed invocations early in the future, checking the
validity of link->type in bpf_link_show_fdinfo() and emitting a warning
when such invocations are missed. |
| An improper array index validation vulnerability exists in the determineMinMax functionality of OFFIS DCMTK 3.6.8. A specially crafted DICOM file can lead to an out-of-bounds write. An attacker can provide a malicious file to trigger this vulnerability. |
| In the Linux kernel, the following vulnerability has been resolved:
igb: Fix potential invalid memory access in igb_init_module()
The pci_register_driver() can fail and when this happened, the dca_notifier
needs to be unregistered, otherwise the dca_notifier can be called when
igb fails to install, resulting to invalid memory access. |
| aiohttp is an asynchronous HTTP client/server framework for asyncio and Python. Prior to version 3.10.11, the Python parser parses newlines in chunk extensions incorrectly which can lead to request smuggling vulnerabilities under certain conditions. If a pure Python version of aiohttp is installed (i.e. without the usual C extensions) or `AIOHTTP_NO_EXTENSIONS` is enabled, then an attacker may be able to execute a request smuggling attack to bypass certain firewalls or proxy protections. Version 3.10.11 fixes the issue. |
| The NVMe driver queue processing is vulernable to guest-induced infinite loops. |
| The hda driver is vulnerable to a buffer over-read from a guest-controlled value. |
| A guest can trigger an infinite loop in the hda audio driver. |
| The virtio_vq_recordon function is subject to a time-of-check to time-of-use (TOCTOU) race condition. |
| The NVMe driver function nvme_opc_get_log_page is vulnerable to a buffer over-read from a guest-controlled value. |
| Time-of-check Time-of-use (TOCTOU) Race Condition vulnerability during JSP compilation in Apache Tomcat permits an RCE on case insensitive file systems when the default servlet is enabled for write (non-default configuration).
This issue affects Apache Tomcat: from 11.0.0-M1 through 11.0.1, from 10.1.0-M1 through 10.1.33, from 9.0.0.M1 through 9.0.97.
The following versions were EOL at the time the CVE was created but are
known to be affected: 8.5.0 though 8.5.100. Other, older, EOL versions may also be affected.
Users are recommended to upgrade to version 11.0.2, 10.1.34 or 9.0.98, which fixes the issue. |
| Unchecked return value can allow Apache Traffic Server to retain privileges on startup.
This issue affects Apache Traffic Server: from 9.2.0 through 9.2.5, from 10.0.0 through 10.0.1.
Users are recommended to upgrade to version 9.2.6 or 10.0.2, which fixes the issue. |
| In the Linux kernel, the following vulnerability has been resolved:
ipv4: ip_tunnel: Fix suspicious RCU usage warning in ip_tunnel_find()
The per-netns IP tunnel hash table is protected by the RTNL mutex and
ip_tunnel_find() is only called from the control path where the mutex is
taken.
Add a lockdep expression to hlist_for_each_entry_rcu() in
ip_tunnel_find() in order to validate that the mutex is held and to
silence the suspicious RCU usage warning [1].
[1]
WARNING: suspicious RCU usage
6.12.0-rc3-custom-gd95d9a31aceb #139 Not tainted
-----------------------------
net/ipv4/ip_tunnel.c:221 RCU-list traversed in non-reader section!!
other info that might help us debug this:
rcu_scheduler_active = 2, debug_locks = 1
1 lock held by ip/362:
#0: ffffffff86fc7cb0 (rtnl_mutex){+.+.}-{3:3}, at: rtnetlink_rcv_msg+0x377/0xf60
stack backtrace:
CPU: 12 UID: 0 PID: 362 Comm: ip Not tainted 6.12.0-rc3-custom-gd95d9a31aceb #139
Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011
Call Trace:
<TASK>
dump_stack_lvl+0xba/0x110
lockdep_rcu_suspicious.cold+0x4f/0xd6
ip_tunnel_find+0x435/0x4d0
ip_tunnel_newlink+0x517/0x7a0
ipgre_newlink+0x14c/0x170
__rtnl_newlink+0x1173/0x19c0
rtnl_newlink+0x6c/0xa0
rtnetlink_rcv_msg+0x3cc/0xf60
netlink_rcv_skb+0x171/0x450
netlink_unicast+0x539/0x7f0
netlink_sendmsg+0x8c1/0xd80
____sys_sendmsg+0x8f9/0xc20
___sys_sendmsg+0x197/0x1e0
__sys_sendmsg+0x122/0x1f0
do_syscall_64+0xbb/0x1d0
entry_SYSCALL_64_after_hwframe+0x77/0x7f |
| In the Linux kernel, the following vulnerability has been resolved:
arm64/sve: Discard stale CPU state when handling SVE traps
The logic for handling SVE traps manipulates saved FPSIMD/SVE state
incorrectly, and a race with preemption can result in a task having
TIF_SVE set and TIF_FOREIGN_FPSTATE clear even though the live CPU state
is stale (e.g. with SVE traps enabled). This has been observed to result
in warnings from do_sve_acc() where SVE traps are not expected while
TIF_SVE is set:
| if (test_and_set_thread_flag(TIF_SVE))
| WARN_ON(1); /* SVE access shouldn't have trapped */
Warnings of this form have been reported intermittently, e.g.
https://lore.kernel.org/linux-arm-kernel/CA+G9fYtEGe_DhY2Ms7+L7NKsLYUomGsgqpdBj+QwDLeSg=JhGg@mail.gmail.com/
https://lore.kernel.org/linux-arm-kernel/000000000000511e9a060ce5a45c@google.com/
The race can occur when the SVE trap handler is preempted before and
after manipulating the saved FPSIMD/SVE state, starting and ending on
the same CPU, e.g.
| void do_sve_acc(unsigned long esr, struct pt_regs *regs)
| {
| // Trap on CPU 0 with TIF_SVE clear, SVE traps enabled
| // task->fpsimd_cpu is 0.
| // per_cpu_ptr(&fpsimd_last_state, 0) is task.
|
| ...
|
| // Preempted; migrated from CPU 0 to CPU 1.
| // TIF_FOREIGN_FPSTATE is set.
|
| get_cpu_fpsimd_context();
|
| if (test_and_set_thread_flag(TIF_SVE))
| WARN_ON(1); /* SVE access shouldn't have trapped */
|
| sve_init_regs() {
| if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
| ...
| } else {
| fpsimd_to_sve(current);
| current->thread.fp_type = FP_STATE_SVE;
| }
| }
|
| put_cpu_fpsimd_context();
|
| // Preempted; migrated from CPU 1 to CPU 0.
| // task->fpsimd_cpu is still 0
| // If per_cpu_ptr(&fpsimd_last_state, 0) is still task then:
| // - Stale HW state is reused (with SVE traps enabled)
| // - TIF_FOREIGN_FPSTATE is cleared
| // - A return to userspace skips HW state restore
| }
Fix the case where the state is not live and TIF_FOREIGN_FPSTATE is set
by calling fpsimd_flush_task_state() to detach from the saved CPU
state. This ensures that a subsequent context switch will not reuse the
stale CPU state, and will instead set TIF_FOREIGN_FPSTATE, forcing the
new state to be reloaded from memory prior to a return to userspace. |
| In the Linux kernel, the following vulnerability has been resolved:
net: fix crash when config small gso_max_size/gso_ipv4_max_size
Config a small gso_max_size/gso_ipv4_max_size will lead to an underflow
in sk_dst_gso_max_size(), which may trigger a BUG_ON crash,
because sk->sk_gso_max_size would be much bigger than device limits.
Call Trace:
tcp_write_xmit
tso_segs = tcp_init_tso_segs(skb, mss_now);
tcp_set_skb_tso_segs
tcp_skb_pcount_set
// skb->len = 524288, mss_now = 8
// u16 tso_segs = 524288/8 = 65535 -> 0
tso_segs = DIV_ROUND_UP(skb->len, mss_now)
BUG_ON(!tso_segs)
Add check for the minimum value of gso_max_size and gso_ipv4_max_size. |
| In the Linux kernel, the following vulnerability has been resolved:
ntfs3: Add bounds checking to mi_enum_attr()
Added bounds checking to make sure that every attr don't stray beyond
valid memory region. |