| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
gpio: mpsse: fix reference leak in gpio_mpsse_probe() error paths
The reference obtained by calling usb_get_dev() is not released in the
gpio_mpsse_probe() error paths. Fix that by using device managed helper
functions. Also remove the usb_put_dev() call in the disconnect function
since now it will be released automatically. |
| The Ajax Load More – Infinite Scroll, Load More, & Lazy Load plugin for WordPress is vulnerable to unauthorized access of data due to incorrect authorization on the parse_custom_args() function in all versions up to, and including, 7.8.1. This makes it possible for unauthenticated attackers to expose the titles and excerpts of private, draft, pending, scheduled, and trashed posts. |
| The NEX-Forms – Ultimate Forms Plugin for WordPress is vulnerable to unauthorized access of data due to a missing capability check on the NF5_Export_Forms class constructor in all versions up to, and including, 9.1.8. This makes it possible for unauthenticated attackers to export form configurations, that may include sensitive data, such as email addresses, PayPal API credentials, and third-party integration keys by enumerating the nex_forms_Id parameter. |
| A flaw was found in Keycloak Admin API. This vulnerability allows an administrator with limited privileges to retrieve sensitive custom attributes via the /unmanagedAttributes endpoint, bypassing User Profile visibility settings. |
| The Booking Calendar plugin for WordPress is vulnerable to unauthorized access of data due to a missing capability check on the wpbc_ajax_WPBC_FLEXTIMELINE_NAV() function in all versions up to, and including, 10.14.13. This makes it possible for unauthenticated attackers to retrieve booking information including customer names, phones and emails. |
| The SupportCandy – Helpdesk & Customer Support Ticket System plugin for WordPress is vulnerable to Insecure Direct Object Reference in all versions up to, and including, 3.4.4 via the 'add_reply' function due to missing validation on a user controlled key. This makes it possible for authenticated attackers, with subscriber-level access and above, to steal file attachments uploaded by other users by specifying arbitrary attachment IDs in the 'description_attachments' parameter, re-associating those files to their own tickets and removing access from the original owners. |
| The SupportCandy – Helpdesk & Customer Support Ticket System plugin for WordPress is vulnerable to SQL Injection via the Number-type custom field filter in all versions up to, and including, 3.4.4. This is due to insufficient escaping on the user-supplied operand value when using the equals operator and lack of sufficient preparation on the existing SQL query. This makes it possible for authenticated attackers, with Subscriber-level access and above (customers), to append additional SQL queries into already existing queries that can be used to extract sensitive information from the database. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix NULL dereference on root when tracing inode eviction
When evicting an inode the first thing we do is to setup tracing for it,
which implies fetching the root's id. But in btrfs_evict_inode() the
root might be NULL, as implied in the next check that we do in
btrfs_evict_inode().
Hence, we either should set the ->root_objectid to 0 in case the root is
NULL, or we move tracing setup after checking that the root is not
NULL. Setting the rootid to 0 at least gives us the possibility to trace
this call even in the case when the root is NULL, so that's the solution
taken here. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: always detect conflicting inodes when logging inode refs
After rename exchanging (either with the rename exchange operation or
regular renames in multiple non-atomic steps) two inodes and at least
one of them is a directory, we can end up with a log tree that contains
only of the inodes and after a power failure that can result in an attempt
to delete the other inode when it should not because it was not deleted
before the power failure. In some case that delete attempt fails when
the target inode is a directory that contains a subvolume inside it, since
the log replay code is not prepared to deal with directory entries that
point to root items (only inode items).
1) We have directories "dir1" (inode A) and "dir2" (inode B) under the
same parent directory;
2) We have a file (inode C) under directory "dir1" (inode A);
3) We have a subvolume inside directory "dir2" (inode B);
4) All these inodes were persisted in a past transaction and we are
currently at transaction N;
5) We rename the file (inode C), so at btrfs_log_new_name() we update
inode C's last_unlink_trans to N;
6) We get a rename exchange for "dir1" (inode A) and "dir2" (inode B),
so after the exchange "dir1" is inode B and "dir2" is inode A.
During the rename exchange we call btrfs_log_new_name() for inodes
A and B, but because they are directories, we don't update their
last_unlink_trans to N;
7) An fsync against the file (inode C) is done, and because its inode
has a last_unlink_trans with a value of N we log its parent directory
(inode A) (through btrfs_log_all_parents(), called from
btrfs_log_inode_parent()).
8) So we end up with inode B not logged, which now has the old name
of inode A. At copy_inode_items_to_log(), when logging inode A, we
did not check if we had any conflicting inode to log because inode
A has a generation lower than the current transaction (created in
a past transaction);
9) After a power failure, when replaying the log tree, since we find that
inode A has a new name that conflicts with the name of inode B in the
fs tree, we attempt to delete inode B... this is wrong since that
directory was never deleted before the power failure, and because there
is a subvolume inside that directory, attempting to delete it will fail
since replay_dir_deletes() and btrfs_unlink_inode() are not prepared
to deal with dir items that point to roots instead of inodes.
When that happens the mount fails and we get a stack trace like the
following:
[87.2314] BTRFS info (device dm-0): start tree-log replay
[87.2318] BTRFS critical (device dm-0): failed to delete reference to subvol, root 5 inode 256 parent 259
[87.2332] ------------[ cut here ]------------
[87.2338] BTRFS: Transaction aborted (error -2)
[87.2346] WARNING: CPU: 1 PID: 638968 at fs/btrfs/inode.c:4345 __btrfs_unlink_inode+0x416/0x440 [btrfs]
[87.2368] Modules linked in: btrfs loop dm_thin_pool (...)
[87.2470] CPU: 1 UID: 0 PID: 638968 Comm: mount Tainted: G W 6.18.0-rc7-btrfs-next-218+ #2 PREEMPT(full)
[87.2489] Tainted: [W]=WARN
[87.2494] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.2-0-gea1b7a073390-prebuilt.qemu.org 04/01/2014
[87.2514] RIP: 0010:__btrfs_unlink_inode+0x416/0x440 [btrfs]
[87.2538] Code: c0 89 04 24 (...)
[87.2568] RSP: 0018:ffffc0e741f4b9b8 EFLAGS: 00010286
[87.2574] RAX: 0000000000000000 RBX: ffff9d3ec8a6cf60 RCX: 0000000000000000
[87.2582] RDX: 0000000000000002 RSI: ffffffff84ab45a1 RDI: 00000000ffffffff
[87.2591] RBP: ffff9d3ec8a6ef20 R08: 0000000000000000 R09: ffffc0e741f4b840
[87.2599] R10: ffff9d45dc1fffa8 R11: 0000000000000003 R12: ffff9d3ee26d77e0
[87.2608] R13: ffffc0e741f4ba98 R14: ffff9d4458040800 R15: ffff9d44b6b7ca10
[87.2618] FS: 00007f7b9603a840(0000) GS:ffff9d4658982000(0000) knlGS:0000000000000000
[87.
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
can: j1939: make j1939_session_activate() fail if device is no longer registered
syzbot is still reporting
unregister_netdevice: waiting for vcan0 to become free. Usage count = 2
even after commit 93a27b5891b8 ("can: j1939: add missing calls in
NETDEV_UNREGISTER notification handler") was added. A debug printk() patch
found that j1939_session_activate() can succeed even after
j1939_cancel_active_session() from j1939_netdev_notify(NETDEV_UNREGISTER)
has completed.
Since j1939_cancel_active_session() is processed with the session list lock
held, checking ndev->reg_state in j1939_session_activate() with the session
list lock held can reliably close the race window. |
| In the Linux kernel, the following vulnerability has been resolved:
rust_binder: remove spin_lock() in rust_shrink_free_page()
When forward-porting Rust Binder to 6.18, I neglected to take commit
fb56fdf8b9a2 ("mm/list_lru: split the lock to per-cgroup scope") into
account, and apparently I did not end up running the shrinker callback
when I sanity tested the driver before submission. This leads to crashes
like the following:
============================================
WARNING: possible recursive locking detected
6.18.0-mainline-maybe-dirty #1 Tainted: G IO
--------------------------------------------
kswapd0/68 is trying to acquire lock:
ffff956000fa18b0 (&l->lock){+.+.}-{2:2}, at: lock_list_lru_of_memcg+0x128/0x230
but task is already holding lock:
ffff956000fa18b0 (&l->lock){+.+.}-{2:2}, at: rust_helper_spin_lock+0xd/0x20
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(&l->lock);
lock(&l->lock);
*** DEADLOCK ***
May be due to missing lock nesting notation
3 locks held by kswapd0/68:
#0: ffffffff90d2e260 (fs_reclaim){+.+.}-{0:0}, at: kswapd+0x597/0x1160
#1: ffff956000fa18b0 (&l->lock){+.+.}-{2:2}, at: rust_helper_spin_lock+0xd/0x20
#2: ffffffff90cf3680 (rcu_read_lock){....}-{1:2}, at: lock_list_lru_of_memcg+0x2d/0x230
To fix this, remove the spin_lock() call from rust_shrink_free_page(). |
| In the Linux kernel, the following vulnerability has been resolved:
counter: interrupt-cnt: Drop IRQF_NO_THREAD flag
An IRQ handler can either be IRQF_NO_THREAD or acquire spinlock_t, as
CONFIG_PROVE_RAW_LOCK_NESTING warns:
=============================
[ BUG: Invalid wait context ]
6.18.0-rc1+git... #1
-----------------------------
some-user-space-process/1251 is trying to lock:
(&counter->events_list_lock){....}-{3:3}, at: counter_push_event [counter]
other info that might help us debug this:
context-{2:2}
no locks held by some-user-space-process/....
stack backtrace:
CPU: 0 UID: 0 PID: 1251 Comm: some-user-space-process 6.18.0-rc1+git... #1 PREEMPT
Call trace:
show_stack (C)
dump_stack_lvl
dump_stack
__lock_acquire
lock_acquire
_raw_spin_lock_irqsave
counter_push_event [counter]
interrupt_cnt_isr [interrupt_cnt]
__handle_irq_event_percpu
handle_irq_event
handle_simple_irq
handle_irq_desc
generic_handle_domain_irq
gpio_irq_handler
handle_irq_desc
generic_handle_domain_irq
gic_handle_irq
call_on_irq_stack
do_interrupt_handler
el0_interrupt
__el0_irq_handler_common
el0t_64_irq_handler
el0t_64_irq
... and Sebastian correctly points out. Remove IRQF_NO_THREAD as an
alternative to switching to raw_spinlock_t, because the latter would limit
all potential nested locks to raw_spinlock_t only. |
| HotCRP is conference review software. HotCRP versions from October 2025 through January 2026 delivered documents of all types with inline Content-Disposition, causing them to be rendered in the user’s browser rather than downloaded. (The intended behavior was for only `text/plain`, `application/pdf`, `image/gif`, `image/jpeg`, and `image/png` to be delivered inline, though adding `save=0` to the document URL could request inline delivery for any document.) This made users who clicked a document link vulnerable to cross-site scripting attacks. An uploaded HTML or SVG document would run in the viewer’s browser with access to their HotCRP credentials, and Javascript in that document could eventually make arbitrary calls to HotCRP’s API. Malicious documents could be uploaded to submission fields with “file upload” or “attachment” type, or as attachments to comments. PDF upload fields were not vulnerable. A search of documents uploaded to hotcrp.com found no evidence of exploitation. The vulnerability was introduced in commit aa20ef288828b04550950cf67c831af8a525f508 (11 October 2025), present in development versions and v3.2, and fixed in commit 8933e86c9f384b356dc4c6e9e2814dee1074b323 and v3.2.1. Additionally, c3d88a7e18d52119c65df31c2cc994edd2beccc5 and v3.2.1 remove support for `save=0`. |
| Online-Exam-System 2015 contains a SQL injection vulnerability in the feedback module that allows attackers to manipulate database queries through the 'fid' parameter. Attackers can inject malicious SQL code into the 'fid' parameter to potentially extract, modify, or delete database information. |
| Crystal Shard http-protection 0.2.0 contains an IP spoofing vulnerability that allows attackers to bypass protection middleware by manipulating request headers. Attackers can hardcode consistent IP values across X-Forwarded-For, X-Client-IP, and X-Real-IP headers to circumvent security checks and gain unauthorized access. |
| Quick Player 1.3 contains a buffer overflow vulnerability that allows attackers to execute arbitrary code by crafting a malicious .m3l file with carefully constructed payload. Attackers can trigger the vulnerability by loading a specially crafted file through the application's file loading mechanism, potentially enabling remote code execution. |
| Frigate 3.36.0.9 contains a local buffer overflow vulnerability in the Command Line input field that allows attackers to execute arbitrary code. Attackers can craft a malicious payload to overflow the buffer, bypass DEP, and execute commands like launching calc.exe through a specially crafted input sequence. |
| OpenCTI 3.3.1 is vulnerable to a reflected cross-site scripting (XSS) attack via the /graphql endpoint. An attacker can inject arbitrary JavaScript code by sending a crafted GET request with a malicious payload in the query string, leading to execution of JavaScript in the victim's browser. For example, a request to /graphql?'"--></style></scRipt><scRipt>alert('Raif_Berkay')</scRipt> will trigger an alert. This vulnerability was discovered by Raif Berkay Dincel and confirmed on Linux Mint and Windows 10. |
| 10-Strike Bandwidth Monitor 3.9 contains a buffer overflow vulnerability that allows attackers to bypass SafeSEH, ASLR, and DEP protections through carefully crafted input. Attackers can exploit the vulnerability by sending a malicious payload to the application's registration key input, enabling remote code execution and launching arbitrary system commands. |
| Frigate Professional 3.36.0.9 contains a local buffer overflow vulnerability in the 'Find Computer' feature that allows attackers to execute arbitrary code by overflowing the computer name input field. Attackers can craft a malicious payload that triggers a buffer overflow, enabling code execution and launching calculator as a proof of concept. |