Filtered by vendor Redhat Subscriptions
Total 22972 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2023-42852 4 Apple, Debian, Fedoraproject and 1 more 14 Ipados, Iphone Os, Macos and 11 more 2025-05-05 8.8 High
A logic issue was addressed with improved checks. This issue is fixed in iOS 17.1 and iPadOS 17.1, watchOS 10.1, iOS 16.7.2 and iPadOS 16.7.2, macOS Sonoma 14.1, Safari 17.1, tvOS 17.1. Processing web content may lead to arbitrary code execution.
CVE-2022-32888 2 Apple, Redhat 7 Ipados, Iphone Os, Macos and 4 more 2025-05-05 8.8 High
An out-of-bounds write issue was addressed with improved bounds checking. This issue is fixed in macOS Big Sur 11.7, macOS Ventura 13, iOS 16, iOS 15.7 and iPadOS 15.7, watchOS 9, macOS Monterey 12.6, tvOS 16. Processing maliciously crafted web content may lead to arbitrary code execution.
CVE-2022-42442 2 Ibm, Redhat 2 Robotic Process Automation For Cloud Pak, Openshift Container Platform 2025-05-05 3.3 Low
IBM Robotic Process Automation for Cloud Pak 21.0.1, 21.0.2, 21.0.3, 21.0.4, and 21.0.5 is vulnerable to exposure of the first tenant owner e-mail address to users with access to the container platform. IBM X-Force ID: 238214.
CVE-2023-52160 6 Debian, Fedoraproject, Google and 3 more 7 Debian Linux, Fedora, Android and 4 more 2025-05-05 6.5 Medium
The implementation of PEAP in wpa_supplicant through 2.10 allows authentication bypass. For a successful attack, wpa_supplicant must be configured to not verify the network's TLS certificate during Phase 1 authentication, and an eap_peap_decrypt vulnerability can then be abused to skip Phase 2 authentication. The attack vector is sending an EAP-TLV Success packet instead of starting Phase 2. This allows an adversary to impersonate Enterprise Wi-Fi networks.
CVE-2023-40283 4 Canonical, Debian, Linux and 1 more 9 Ubuntu Linux, Debian Linux, Linux Kernel and 6 more 2025-05-05 7.8 High
An issue was discovered in l2cap_sock_release in net/bluetooth/l2cap_sock.c in the Linux kernel before 6.4.10. There is a use-after-free because the children of an sk are mishandled.
CVE-2018-5729 4 Debian, Fedoraproject, Mit and 1 more 7 Debian Linux, Fedora, Kerberos 5 and 4 more 2025-05-05 4.7 Medium
MIT krb5 1.6 or later allows an authenticated kadmin with permission to add principals to an LDAP Kerberos database to cause a denial of service (NULL pointer dereference) or bypass a DN container check by supplying tagged data that is internal to the database module.
CVE-2016-1000338 4 Bouncycastle, Canonical, Netapp and 1 more 6 Legion-of-the-bouncy-castle-java-crytography-api, Ubuntu Linux, 7-mode Transition Tool and 3 more 2025-05-05 7.5 High
In Bouncy Castle JCE Provider version 1.55 and earlier the DSA does not fully validate ASN.1 encoding of signature on verification. It is possible to inject extra elements in the sequence making up the signature and still have it validate, which in some cases may allow the introduction of 'invisible' data into a signed structure.
CVE-2022-42826 3 Apple, Redhat, Webkitgtk 7 Ipados, Iphone Os, Macos and 4 more 2025-05-05 8.8 High
A use after free issue was addressed with improved memory management. This issue is fixed in macOS Ventura 13, iOS 16.1 and iPadOS 16, Safari 16.1. Processing maliciously crafted web content may lead to arbitrary code execution.
CVE-2018-5730 4 Debian, Fedoraproject, Mit and 1 more 7 Debian Linux, Fedora, Kerberos 5 and 4 more 2025-05-05 3.8 Low
MIT krb5 1.6 or later allows an authenticated kadmin with permission to add principals to an LDAP Kerberos database to circumvent a DN containership check by supplying both a "linkdn" and "containerdn" database argument, or by supplying a DN string which is a left extension of a container DN string but is not hierarchically within the container DN.
CVE-2020-24370 4 Debian, Fedoraproject, Lua and 1 more 4 Debian Linux, Fedora, Lua and 1 more 2025-05-05 5.3 Medium
ldebug.c in Lua 5.4.0 allows a negation overflow and segmentation fault in getlocal and setlocal, as demonstrated by getlocal(3,2^31).
CVE-2021-38160 4 Debian, Linux, Netapp and 1 more 9 Debian Linux, Linux Kernel, Element Software and 6 more 2025-05-05 7.8 High
In drivers/char/virtio_console.c in the Linux kernel before 5.13.4, data corruption or loss can be triggered by an untrusted device that supplies a buf->len value exceeding the buffer size. NOTE: the vendor indicates that the cited data corruption is not a vulnerability in any existing use case; the length validation was added solely for robustness in the face of anomalous host OS behavior
CVE-2022-4244 2 Codehaus-plexus, Redhat 23 Plexus-utils, A Mq Clients, Amq Broker and 20 more 2025-05-05 7.5 High
A flaw was found in codeplex-codehaus. A directory traversal attack (also known as path traversal) aims to access files and directories stored outside the intended folder. By manipulating files with "dot-dot-slash (../)" sequences and their variations or by using absolute file paths, it may be possible to access arbitrary files and directories stored on the file system, including application source code, configuration, and other critical system files.
CVE-2023-45871 3 Debian, Linux, Redhat 9 Debian Linux, Linux Kernel, Enterprise Linux and 6 more 2025-05-05 7.5 High
An issue was discovered in drivers/net/ethernet/intel/igb/igb_main.c in the IGB driver in the Linux kernel before 6.5.3. A buffer size may not be adequate for frames larger than the MTU.
CVE-2025-21991 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-05-04 7.8 High
In the Linux kernel, the following vulnerability has been resolved: x86/microcode/AMD: Fix out-of-bounds on systems with CPU-less NUMA nodes Currently, load_microcode_amd() iterates over all NUMA nodes, retrieves their CPU masks and unconditionally accesses per-CPU data for the first CPU of each mask. According to Documentation/admin-guide/mm/numaperf.rst: "Some memory may share the same node as a CPU, and others are provided as memory only nodes." Therefore, some node CPU masks may be empty and wouldn't have a "first CPU". On a machine with far memory (and therefore CPU-less NUMA nodes): - cpumask_of_node(nid) is 0 - cpumask_first(0) is CONFIG_NR_CPUS - cpu_data(CONFIG_NR_CPUS) accesses the cpu_info per-CPU array at an index that is 1 out of bounds This does not have any security implications since flashing microcode is a privileged operation but I believe this has reliability implications by potentially corrupting memory while flashing a microcode update. When booting with CONFIG_UBSAN_BOUNDS=y on an AMD machine that flashes a microcode update. I get the following splat: UBSAN: array-index-out-of-bounds in arch/x86/kernel/cpu/microcode/amd.c:X:Y index 512 is out of range for type 'unsigned long[512]' [...] Call Trace: dump_stack __ubsan_handle_out_of_bounds load_microcode_amd request_microcode_amd reload_store kernfs_fop_write_iter vfs_write ksys_write do_syscall_64 entry_SYSCALL_64_after_hwframe Change the loop to go over only NUMA nodes which have CPUs before determining whether the first CPU on the respective node needs microcode update. [ bp: Massage commit message, fix typo. ]
CVE-2025-21887 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-05-04 7.8 High
In the Linux kernel, the following vulnerability has been resolved: ovl: fix UAF in ovl_dentry_update_reval by moving dput() in ovl_link_up The issue was caused by dput(upper) being called before ovl_dentry_update_reval(), while upper->d_flags was still accessed in ovl_dentry_remote(). Move dput(upper) after its last use to prevent use-after-free. BUG: KASAN: slab-use-after-free in ovl_dentry_remote fs/overlayfs/util.c:162 [inline] BUG: KASAN: slab-use-after-free in ovl_dentry_update_reval+0xd2/0xf0 fs/overlayfs/util.c:167 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:114 print_address_description mm/kasan/report.c:377 [inline] print_report+0xc3/0x620 mm/kasan/report.c:488 kasan_report+0xd9/0x110 mm/kasan/report.c:601 ovl_dentry_remote fs/overlayfs/util.c:162 [inline] ovl_dentry_update_reval+0xd2/0xf0 fs/overlayfs/util.c:167 ovl_link_up fs/overlayfs/copy_up.c:610 [inline] ovl_copy_up_one+0x2105/0x3490 fs/overlayfs/copy_up.c:1170 ovl_copy_up_flags+0x18d/0x200 fs/overlayfs/copy_up.c:1223 ovl_rename+0x39e/0x18c0 fs/overlayfs/dir.c:1136 vfs_rename+0xf84/0x20a0 fs/namei.c:4893 ... </TASK>
CVE-2025-21694 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: fs/proc: fix softlockup in __read_vmcore (part 2) Since commit 5cbcb62dddf5 ("fs/proc: fix softlockup in __read_vmcore") the number of softlockups in __read_vmcore at kdump time have gone down, but they still happen sometimes. In a memory constrained environment like the kdump image, a softlockup is not just a harmless message, but it can interfere with things like RCU freeing memory, causing the crashdump to get stuck. The second loop in __read_vmcore has a lot more opportunities for natural sleep points, like scheduling out while waiting for a data write to happen, but apparently that is not always enough. Add a cond_resched() to the second loop in __read_vmcore to (hopefully) get rid of the softlockups.
CVE-2024-57979 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-05-04 7.8 High
In the Linux kernel, the following vulnerability has been resolved: pps: Fix a use-after-free On a board running ntpd and gpsd, I'm seeing a consistent use-after-free in sys_exit() from gpsd when rebooting: pps pps1: removed ------------[ cut here ]------------ kobject: '(null)' (00000000db4bec24): is not initialized, yet kobject_put() is being called. WARNING: CPU: 2 PID: 440 at lib/kobject.c:734 kobject_put+0x120/0x150 CPU: 2 UID: 299 PID: 440 Comm: gpsd Not tainted 6.11.0-rc6-00308-gb31c44928842 #1 Hardware name: Raspberry Pi 4 Model B Rev 1.1 (DT) pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : kobject_put+0x120/0x150 lr : kobject_put+0x120/0x150 sp : ffffffc0803d3ae0 x29: ffffffc0803d3ae0 x28: ffffff8042dc9738 x27: 0000000000000001 x26: 0000000000000000 x25: ffffff8042dc9040 x24: ffffff8042dc9440 x23: ffffff80402a4620 x22: ffffff8042ef4bd0 x21: ffffff80405cb600 x20: 000000000008001b x19: ffffff8040b3b6e0 x18: 0000000000000000 x17: 0000000000000000 x16: 0000000000000000 x15: 696e6920746f6e20 x14: 7369203a29343263 x13: 205d303434542020 x12: 0000000000000000 x11: 0000000000000000 x10: 0000000000000000 x9 : 0000000000000000 x8 : 0000000000000000 x7 : 0000000000000000 x6 : 0000000000000000 x5 : 0000000000000000 x4 : 0000000000000000 x3 : 0000000000000000 x2 : 0000000000000000 x1 : 0000000000000000 x0 : 0000000000000000 Call trace: kobject_put+0x120/0x150 cdev_put+0x20/0x3c __fput+0x2c4/0x2d8 ____fput+0x1c/0x38 task_work_run+0x70/0xfc do_exit+0x2a0/0x924 do_group_exit+0x34/0x90 get_signal+0x7fc/0x8c0 do_signal+0x128/0x13b4 do_notify_resume+0xdc/0x160 el0_svc+0xd4/0xf8 el0t_64_sync_handler+0x140/0x14c el0t_64_sync+0x190/0x194 ---[ end trace 0000000000000000 ]--- ...followed by more symptoms of corruption, with similar stacks: refcount_t: underflow; use-after-free. kernel BUG at lib/list_debug.c:62! Kernel panic - not syncing: Oops - BUG: Fatal exception This happens because pps_device_destruct() frees the pps_device with the embedded cdev immediately after calling cdev_del(), but, as the comment above cdev_del() notes, fops for previously opened cdevs are still callable even after cdev_del() returns. I think this bug has always been there: I can't explain why it suddenly started happening every time I reboot this particular board. In commit d953e0e837e6 ("pps: Fix a use-after free bug when unregistering a source."), George Spelvin suggested removing the embedded cdev. That seems like the simplest way to fix this, so I've implemented his suggestion, using __register_chrdev() with pps_idr becoming the source of truth for which minor corresponds to which device. But now that pps_idr defines userspace visibility instead of cdev_add(), we need to be sure the pps->dev refcount can't reach zero while userspace can still find it again. So, the idr_remove() call moves to pps_unregister_cdev(), and pps_idr now holds a reference to pps->dev. pps_core: source serial1 got cdev (251:1) <...> pps pps1: removed pps_core: unregistering pps1 pps_core: deallocating pps1
CVE-2024-57903 1 Redhat 1 Enterprise Linux 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: restrict SO_REUSEPORT to inet sockets After blamed commit, crypto sockets could accidentally be destroyed from RCU call back, as spotted by zyzbot [1]. Trying to acquire a mutex in RCU callback is not allowed. Restrict SO_REUSEPORT socket option to inet sockets. v1 of this patch supported TCP, UDP and SCTP sockets, but fcnal-test.sh test needed RAW and ICMP support. [1] BUG: sleeping function called from invalid context at kernel/locking/mutex.c:562 in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 24, name: ksoftirqd/1 preempt_count: 100, expected: 0 RCU nest depth: 0, expected: 0 1 lock held by ksoftirqd/1/24: #0: ffffffff8e937ba0 (rcu_callback){....}-{0:0}, at: rcu_lock_acquire include/linux/rcupdate.h:337 [inline] #0: ffffffff8e937ba0 (rcu_callback){....}-{0:0}, at: rcu_do_batch kernel/rcu/tree.c:2561 [inline] #0: ffffffff8e937ba0 (rcu_callback){....}-{0:0}, at: rcu_core+0xa37/0x17a0 kernel/rcu/tree.c:2823 Preemption disabled at: [<ffffffff8161c8c8>] softirq_handle_begin kernel/softirq.c:402 [inline] [<ffffffff8161c8c8>] handle_softirqs+0x128/0x9b0 kernel/softirq.c:537 CPU: 1 UID: 0 PID: 24 Comm: ksoftirqd/1 Not tainted 6.13.0-rc3-syzkaller-00174-ga024e377efed #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024 Call Trace: <TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120 __might_resched+0x5d4/0x780 kernel/sched/core.c:8758 __mutex_lock_common kernel/locking/mutex.c:562 [inline] __mutex_lock+0x131/0xee0 kernel/locking/mutex.c:735 crypto_put_default_null_skcipher+0x18/0x70 crypto/crypto_null.c:179 aead_release+0x3d/0x50 crypto/algif_aead.c:489 alg_do_release crypto/af_alg.c:118 [inline] alg_sock_destruct+0x86/0xc0 crypto/af_alg.c:502 __sk_destruct+0x58/0x5f0 net/core/sock.c:2260 rcu_do_batch kernel/rcu/tree.c:2567 [inline] rcu_core+0xaaa/0x17a0 kernel/rcu/tree.c:2823 handle_softirqs+0x2d4/0x9b0 kernel/softirq.c:561 run_ksoftirqd+0xca/0x130 kernel/softirq.c:950 smpboot_thread_fn+0x544/0xa30 kernel/smpboot.c:164 kthread+0x2f0/0x390 kernel/kthread.c:389 ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 </TASK>
CVE-2024-57879 1 Redhat 1 Enterprise Linux 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: iso: Always release hdev at the end of iso_listen_bis Since hci_get_route holds the device before returning, the hdev should be released with hci_dev_put at the end of iso_listen_bis even if the function returns with an error.
CVE-2024-57876 1 Redhat 2 Enterprise Linux, Rhel Eus 2025-05-04 4.6 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/dp_mst: Fix resetting msg rx state after topology removal If the MST topology is removed during the reception of an MST down reply or MST up request sideband message, the drm_dp_mst_topology_mgr::up_req_recv/down_rep_recv states could be reset from one thread via drm_dp_mst_topology_mgr_set_mst(false), racing with the reading/parsing of the message from another thread via drm_dp_mst_handle_down_rep() or drm_dp_mst_handle_up_req(). The race is possible since the reader/parser doesn't hold any lock while accessing the reception state. This in turn can lead to a memory corruption in the reader/parser as described by commit bd2fccac61b4 ("drm/dp_mst: Fix MST sideband message body length check"). Fix the above by resetting the message reception state if needed before reading/parsing a message. Another solution would be to hold the drm_dp_mst_topology_mgr::lock for the whole duration of the message reception/parsing in drm_dp_mst_handle_down_rep() and drm_dp_mst_handle_up_req(), however this would require a bigger change. Since the fix is also needed for stable, opting for the simpler solution in this patch.