| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| An issue was discovered in Bento4 1.6.0-639. There is a memory leak in the function AP4_File::ParseStream in /Core/Ap4File.cpp. |
| An issue was discovered in Bento4 v1.6.0-639. There is a memory leak in AP4_DescriptorFactory::CreateDescriptorFromStream in Core/Ap4DescriptorFactory.cpp, as demonstrated by mp42aac. |
| An out-of-bounds memory write flaw was found in the Linux kernel’s Kid-friendly Wired Controller driver. This flaw allows a local user to crash or potentially escalate their privileges on the system. It is in bigben_probe of drivers/hid/hid-bigbenff.c. The reason is incorrect assumption - bigben devices all have inputs. However, malicious devices can break this assumption, leaking to out-of-bound write. |
| In versions 16.1.x before 16.1.3.2 and 15.1.x before 15.1.5.1, when BIG-IP AFM Network Address Translation policy with IPv6/IPv4 translation rules is configured on a virtual server, undisclosed requests can cause an increase in memory resource utilization. |
| In BIG-IP versions 17.0.x before 17.0.0.1, 16.1.x before 16.1.3.2, 15.1.x before 15.1.7, 14.1.x before 14.1.5.2, and 13.1.x before 13.1.5.1, when a sideband iRule is configured on a virtual server, undisclosed traffic can cause an increase in memory resource utilization. |
| In BIG-IP versions 17.0.x before 17.0.0.1, 16.1.x before 16.1.3.1, 15.1.x before 15.1.7, 14.1.x before 14.1.5.1, and all versions of 13.1.x, and BIG-IQ all versions of 8.x and 7.x, an authenticated iControl REST user can cause an increase in memory resource utilization, via undisclosed requests. |
| In BIG-IP versions 17.0.x before 17.0.0.1, 16.1.x before 16.1.3.1, 15.1.x before 15.1.6.1, 14.1.x before 14.1.5.1, and 13.1.x before 13.1.5.1, when a SIP profile is configured on a virtual server, undisclosed messages can cause an increase in memory resource utilization. |
| A memory leak flaw was found in the UBI driver in drivers/mtd/ubi/attach.c in the Linux kernel through 6.7.4 for UBI_IOCATT, because kobj->name is not released. |
| In all BIG-IP 13.1.x versions, when an iRule containing the HTTP::collect command is configured on a virtual server, undisclosed requests can cause Traffic Management Microkernel (TMM) to terminate. |
| In the Linux kernel, the following vulnerability has been resolved:
af_unix: Call kfree_skb() for dead unix_(sk)->oob_skb in GC.
syzbot reported a warning [0] in __unix_gc() with a repro, which
creates a socketpair and sends one socket's fd to itself using the
peer.
socketpair(AF_UNIX, SOCK_STREAM, 0, [3, 4]) = 0
sendmsg(4, {msg_name=NULL, msg_namelen=0, msg_iov=[{iov_base="\360", iov_len=1}],
msg_iovlen=1, msg_control=[{cmsg_len=20, cmsg_level=SOL_SOCKET,
cmsg_type=SCM_RIGHTS, cmsg_data=[3]}],
msg_controllen=24, msg_flags=0}, MSG_OOB|MSG_PROBE|MSG_DONTWAIT|MSG_ZEROCOPY) = 1
This forms a self-cyclic reference that GC should finally untangle
but does not due to lack of MSG_OOB handling, resulting in memory
leak.
Recently, commit 11498715f266 ("af_unix: Remove io_uring code for
GC.") removed io_uring's dead code in GC and revealed the problem.
The code was executed at the final stage of GC and unconditionally
moved all GC candidates from gc_candidates to gc_inflight_list.
That papered over the reported problem by always making the following
WARN_ON_ONCE(!list_empty(&gc_candidates)) false.
The problem has been there since commit 2aab4b969002 ("af_unix: fix
struct pid leaks in OOB support") added full scm support for MSG_OOB
while fixing another bug.
To fix this problem, we must call kfree_skb() for unix_sk(sk)->oob_skb
if the socket still exists in gc_candidates after purging collected skb.
Then, we need to set NULL to oob_skb before calling kfree_skb() because
it calls last fput() and triggers unix_release_sock(), where we call
duplicate kfree_skb(u->oob_skb) if not NULL.
Note that the leaked socket remained being linked to a global list, so
kmemleak also could not detect it. We need to check /proc/net/protocol
to notice the unfreed socket.
[0]:
WARNING: CPU: 0 PID: 2863 at net/unix/garbage.c:345 __unix_gc+0xc74/0xe80 net/unix/garbage.c:345
Modules linked in:
CPU: 0 PID: 2863 Comm: kworker/u4:11 Not tainted 6.8.0-rc1-syzkaller-00583-g1701940b1a02 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/25/2024
Workqueue: events_unbound __unix_gc
RIP: 0010:__unix_gc+0xc74/0xe80 net/unix/garbage.c:345
Code: 8b 5c 24 50 e9 86 f8 ff ff e8 f8 e4 22 f8 31 d2 48 c7 c6 30 6a 69 89 4c 89 ef e8 97 ef ff ff e9 80 f9 ff ff e8 dd e4 22 f8 90 <0f> 0b 90 e9 7b fd ff ff 48 89 df e8 5c e7 7c f8 e9 d3 f8 ff ff e8
RSP: 0018:ffffc9000b03fba0 EFLAGS: 00010293
RAX: 0000000000000000 RBX: ffffc9000b03fc10 RCX: ffffffff816c493e
RDX: ffff88802c02d940 RSI: ffffffff896982f3 RDI: ffffc9000b03fb30
RBP: ffffc9000b03fce0 R08: 0000000000000001 R09: fffff52001607f66
R10: 0000000000000003 R11: 0000000000000002 R12: dffffc0000000000
R13: ffffc9000b03fc10 R14: ffffc9000b03fc10 R15: 0000000000000001
FS: 0000000000000000(0000) GS:ffff8880b9400000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00005559c8677a60 CR3: 000000000d57a000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
process_one_work+0x889/0x15e0 kernel/workqueue.c:2633
process_scheduled_works kernel/workqueue.c:2706 [inline]
worker_thread+0x8b9/0x12a0 kernel/workqueue.c:2787
kthread+0x2c6/0x3b0 kernel/kthread.c:388
ret_from_fork+0x45/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1b/0x30 arch/x86/entry/entry_64.S:242
</TASK> |
| Vulnerability in the PeopleSoft Enterprise PeopleTools product of Oracle PeopleSoft (component: OpenSearch). Supported versions that are affected are 8.60 and 8.61. Easily exploitable vulnerability allows unauthenticated attacker with network access via HTTP to compromise PeopleSoft Enterprise PeopleTools. Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of PeopleSoft Enterprise PeopleTools. CVSS 3.1 Base Score 7.5 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H). |
| In the Linux kernel, the following vulnerability has been resolved:
ceph: fix inode leak on getattr error in __fh_to_dentry |
| In the Linux kernel, the following vulnerability has been resolved:
HID: sony: Fix a potential memory leak in sony_probe()
If an error occurs after a successful usb_alloc_urb() call, usb_free_urb()
should be called. |
| In the Linux kernel, the following vulnerability has been resolved:
net: ipv4: fix memory leak in ip_mc_add1_src
BUG: memory leak
unreferenced object 0xffff888101bc4c00 (size 32):
comm "syz-executor527", pid 360, jiffies 4294807421 (age 19.329s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
01 00 00 00 00 00 00 00 ac 14 14 bb 00 00 02 00 ................
backtrace:
[<00000000f17c5244>] kmalloc include/linux/slab.h:558 [inline]
[<00000000f17c5244>] kzalloc include/linux/slab.h:688 [inline]
[<00000000f17c5244>] ip_mc_add1_src net/ipv4/igmp.c:1971 [inline]
[<00000000f17c5244>] ip_mc_add_src+0x95f/0xdb0 net/ipv4/igmp.c:2095
[<000000001cb99709>] ip_mc_source+0x84c/0xea0 net/ipv4/igmp.c:2416
[<0000000052cf19ed>] do_ip_setsockopt net/ipv4/ip_sockglue.c:1294 [inline]
[<0000000052cf19ed>] ip_setsockopt+0x114b/0x30c0 net/ipv4/ip_sockglue.c:1423
[<00000000477edfbc>] raw_setsockopt+0x13d/0x170 net/ipv4/raw.c:857
[<00000000e75ca9bb>] __sys_setsockopt+0x158/0x270 net/socket.c:2117
[<00000000bdb993a8>] __do_sys_setsockopt net/socket.c:2128 [inline]
[<00000000bdb993a8>] __se_sys_setsockopt net/socket.c:2125 [inline]
[<00000000bdb993a8>] __x64_sys_setsockopt+0xba/0x150 net/socket.c:2125
[<000000006a1ffdbd>] do_syscall_64+0x40/0x80 arch/x86/entry/common.c:47
[<00000000b11467c4>] entry_SYSCALL_64_after_hwframe+0x44/0xae
In commit 24803f38a5c0 ("igmp: do not remove igmp souce list info when set
link down"), the ip_mc_clear_src() in ip_mc_destroy_dev() was removed,
because it was also called in igmpv3_clear_delrec().
Rough callgraph:
inetdev_destroy
-> ip_mc_destroy_dev
-> igmpv3_clear_delrec
-> ip_mc_clear_src
-> RCU_INIT_POINTER(dev->ip_ptr, NULL)
However, ip_mc_clear_src() called in igmpv3_clear_delrec() doesn't
release in_dev->mc_list->sources. And RCU_INIT_POINTER() assigns the
NULL to dev->ip_ptr. As a result, in_dev cannot be obtained through
inetdev_by_index() and then in_dev->mc_list->sources cannot be released
by ip_mc_del1_src() in the sock_close. Rough call sequence goes like:
sock_close
-> __sock_release
-> inet_release
-> ip_mc_drop_socket
-> inetdev_by_index
-> ip_mc_leave_src
-> ip_mc_del_src
-> ip_mc_del1_src
So we still need to call ip_mc_clear_src() in ip_mc_destroy_dev() to free
in_dev->mc_list->sources. |
| Electron Packager bundles Electron-based application source code with a renamed Electron executable and supporting files into folders ready for distribution. A random segment of ~1-10kb of Node.js heap memory allocated either side of a known buffer will be leaked into the final executable. This memory _could_ contain sensitive information such as environment variables, secrets files, etc. This issue is patched in 18.3.1.
|
| nGrinder before 3.5.9 allows to set delay without limitation, which could be the cause of Denial of Service by remote attacker. |
| A potential DOS vulnerability was discovered in GitLab CE/EE affecting all versions from 10.8 before 15.1.6, all versions starting from 15.2 before 15.2.4, all versions starting from 15.3 before 15.3.2. Improper data handling on branch creation could have been used to trigger high CPU usage. |
| Apache IoTDB version 0.12.2 to 0.12.6, 0.13.0 to 0.13.2 are vulnerable to a Denial of Service attack when accepting untrusted patterns for REGEXP queries with Java 8. Users should upgrade to 0.13.3 which addresses this issue or use a later version of Java to avoid it. |
| The issue was addressed with improved memory handling. This issue is fixed in iOS 15.7.1 and iPadOS 15.7.1, iOS 16.1 and iPadOS 16. Joining a malicious Wi-Fi network may result in a denial-of-service of the Settings app. |
| A logic issue in the handling of concurrent media was addressed with improved state handling. This issue is fixed in macOS Monterey 12.4, iOS 15.5 and iPadOS 15.5. Video self-preview in a webRTC call may be interrupted if the user answers a phone call. |