CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
A flaw was found in Keycloak. By setting a verification policy to 'ALL', the trust store certificate verification is skipped, which is unintended. |
A flaw was found in Yelp. The Gnome user help application allows the help document to execute arbitrary scripts. This vulnerability allows malicious users to input help documents, which may exfiltrate user files to an external environment. |
A flaw was found in the Ansible aap-gateway. Concurrent requests handled by the gateway grpc service can result in concurrency issues due to race condition requests against the proxy. This issue potentially allows a less privileged user to obtain the JWT of a greater privileged user, enabling the server to be jeopardized. A user session or confidential data might be vulnerable. |
A flaw was found in Smallrye, where smallrye-fault-tolerance is vulnerable to an out-of-memory (OOM) issue. This vulnerability is externally triggered when calling the metrics URI. Every call creates a new object within meterMap and may lead to a denial of service (DoS) issue. |
Memory corruption while processing video packets received from video firmware. |
Transient DOS while handling beacon frames with invalid IE header length. |
A use-after-free flaw was found in X.Org and Xwayland. When changing an alarm, the values of the change mask are evaluated one after the other, changing the trigger values as requested, and eventually, SyncInitTrigger() is called. If one of the changes triggers an error, the function will return early, not adding the new sync object, possibly causing a use-after-free when the alarm eventually triggers. |
A use-after-free flaw was found in X.Org and Xwayland. When a device is removed while still frozen, the events queued for that device remain while the device is freed. Replaying the events will cause a use-after-free. |
An out-of-bounds write flaw was found in X.Org and Xwayland. The function GetBarrierDevice() searches for the pointer device based on its device ID and returns the matching value, or supposedly NULL, if no match was found. However, the code will return the last element of the list if no matching device ID is found, which can lead to out-of-bounds memory access. |
An access to an uninitialized pointer flaw was found in X.Org and Xwayland. The function compCheckRedirect() may fail if it cannot allocate the backing pixmap. In that case, compRedirectWindow() will return a BadAlloc error without validating the window tree marked just before, which leaves the validated data partly initialized and the use of an uninitialized pointer later. |
A buffer overflow flaw was found in X.Org and Xwayland. If XkbChangeTypesOfKey() is called with a 0 group, it will resize the key symbols table to 0 but leave the key actions unchanged. If the same function is later called with a non-zero value of groups, this will cause a buffer overflow because the key actions are of the wrong size. |
A heap overflow flaw was found in X.Org and Xwayland. The computation of the length in XkbSizeKeySyms() differs from what is written in XkbWriteKeySyms(), which may lead to a heap-based buffer overflow. |
A buffer overflow flaw was found in X.Org and Xwayland. The code in XkbVModMaskText() allocates a fixed-sized buffer on the stack and copies the names of the virtual modifiers to that buffer. The code fails to check the bounds of the buffer and would copy the data regardless of the size. |
A use-after-free flaw was found in X.Org and Xwayland. The root cursor is referenced in the X server as a global variable. If a client frees the root cursor, the internal reference points to freed memory and causes a use-after-free. |
A flaw was found in grub2. During the network boot process, when trying to search for the configuration file, grub copies data from a user controlled environment variable into an internal buffer using the grub_strcpy() function. During this step, it fails to consider the environment variable length when allocating the internal buffer, resulting in an out-of-bounds write. If correctly exploited, this issue may result in remote code execution through the same network segment grub is searching for the boot information, which can be used to by-pass secure boot protections. |
Suricata is a network Intrusion Detection System, Intrusion Prevention System and Network Security Monitoring engine. Prior to version 7.0.7, invalid ALPN in TLS/QUIC traffic when JA4 matching/logging is enabled can lead to Suricata aborting with a panic. This issue has been addressed in 7.0.7. One may disable ja4 as a workaround. |
Exposed IOCTL with Insufficient Access Control in Phoenix WinFlash Driver on Windows allows Privilege Escalation which allows for modification of system firmware.This issue affects WinFlash Driver: before 4.5.0.0. |
A vulnerability was found in Ruby. The Ruby interpreter is vulnerable to the Marvin Attack. This attack allows the attacker to decrypt previously encrypted messages or forge signatures by exchanging a large number of messages with the vulnerable service. |
A flaw was found in Wildfly Elytron integration. The component does not implement sufficient measures to prevent multiple failed authentication attempts within a short time frame, making it more susceptible to brute force attacks via CLI. |
In the Linux kernel, the following vulnerability has been resolved:
net: use a bounce buffer for copying skb->mark
syzbot found arm64 builds would crash in sock_recv_mark()
when CONFIG_HARDENED_USERCOPY=y
x86 and powerpc are not detecting the issue because
they define user_access_begin.
This will be handled in a different patch,
because a check_object_size() is missing.
Only data from skb->cb[] can be copied directly to/from user space,
as explained in commit 79a8a642bf05 ("net: Whitelist
the skbuff_head_cache "cb" field")
syzbot report was:
usercopy: Kernel memory exposure attempt detected from SLUB object 'skbuff_head_cache' (offset 168, size 4)!
------------[ cut here ]------------
kernel BUG at mm/usercopy.c:102 !
Internal error: Oops - BUG: 00000000f2000800 [#1] PREEMPT SMP
Modules linked in:
CPU: 0 PID: 4410 Comm: syz-executor533 Not tainted 6.2.0-rc7-syzkaller-17907-g2d3827b3f393 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/21/2023
pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : usercopy_abort+0x90/0x94 mm/usercopy.c:90
lr : usercopy_abort+0x90/0x94 mm/usercopy.c:90
sp : ffff80000fb9b9a0
x29: ffff80000fb9b9b0 x28: ffff0000c6073400 x27: 0000000020001a00
x26: 0000000000000014 x25: ffff80000cf52000 x24: fffffc0000000000
x23: 05ffc00000000200 x22: fffffc000324bf80 x21: ffff0000c92fe1a8
x20: 0000000000000001 x19: 0000000000000004 x18: 0000000000000000
x17: 656a626f2042554c x16: ffff0000c6073dd0 x15: ffff80000dbd2118
x14: ffff0000c6073400 x13: 00000000ffffffff x12: ffff0000c6073400
x11: ff808000081bbb4c x10: 0000000000000000 x9 : 7b0572d7cc0ccf00
x8 : 7b0572d7cc0ccf00 x7 : ffff80000bf650d4 x6 : 0000000000000000
x5 : 0000000000000001 x4 : 0000000000000001 x3 : 0000000000000000
x2 : ffff0001fefbff08 x1 : 0000000100000000 x0 : 000000000000006c
Call trace:
usercopy_abort+0x90/0x94 mm/usercopy.c:90
__check_heap_object+0xa8/0x100 mm/slub.c:4761
check_heap_object mm/usercopy.c:196 [inline]
__check_object_size+0x208/0x6b8 mm/usercopy.c:251
check_object_size include/linux/thread_info.h:199 [inline]
__copy_to_user include/linux/uaccess.h:115 [inline]
put_cmsg+0x408/0x464 net/core/scm.c:238
sock_recv_mark net/socket.c:975 [inline]
__sock_recv_cmsgs+0x1fc/0x248 net/socket.c:984
sock_recv_cmsgs include/net/sock.h:2728 [inline]
packet_recvmsg+0x2d8/0x678 net/packet/af_packet.c:3482
____sys_recvmsg+0x110/0x3a0
___sys_recvmsg net/socket.c:2737 [inline]
__sys_recvmsg+0x194/0x210 net/socket.c:2767
__do_sys_recvmsg net/socket.c:2777 [inline]
__se_sys_recvmsg net/socket.c:2774 [inline]
__arm64_sys_recvmsg+0x2c/0x3c net/socket.c:2774
__invoke_syscall arch/arm64/kernel/syscall.c:38 [inline]
invoke_syscall+0x64/0x178 arch/arm64/kernel/syscall.c:52
el0_svc_common+0xbc/0x180 arch/arm64/kernel/syscall.c:142
do_el0_svc+0x48/0x110 arch/arm64/kernel/syscall.c:193
el0_svc+0x58/0x14c arch/arm64/kernel/entry-common.c:637
el0t_64_sync_handler+0x84/0xf0 arch/arm64/kernel/entry-common.c:655
el0t_64_sync+0x190/0x194 arch/arm64/kernel/entry.S:591
Code: 91388800 aa0903e1 f90003e8 94e6d752 (d4210000) |