| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: arm_scmi: Account for failed debug initialization
When the SCMI debug subsystem fails to initialize, the related debug root
will be missing, and the underlying descriptor will be NULL.
Handle this fault condition in the SCMI debug helpers that maintain
metrics counters. |
| In the Linux kernel, the following vulnerability has been resolved:
hwmon: (cgbc-hwmon) Add missing NULL check after devm_kzalloc()
The driver allocates memory for sensor data using devm_kzalloc(), but
did not check if the allocation succeeded. In case of memory allocation
failure, dereferencing the NULL pointer would lead to a kernel crash.
Add a NULL pointer check and return -ENOMEM to handle allocation failure
properly. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/damon/core: fix potential memory leak by cleaning ops_filter in damon_destroy_scheme
Currently, damon_destroy_scheme() only cleans up the filter list but
leaves ops_filter untouched, which could lead to memory leaks when a
scheme is destroyed.
This patch ensures both filter and ops_filter are properly freed in
damon_destroy_scheme(), preventing potential memory leaks. |
| In the Linux kernel, the following vulnerability has been resolved:
media: pci: mg4b: fix uninitialized iio scan data
Fix potential leak of uninitialized stack data to userspace by ensuring
that the `scan` structure is zeroed before use. |
| In the Linux kernel, the following vulnerability has been resolved:
PCI/IOV: Add PCI rescan-remove locking when enabling/disabling SR-IOV
Before disabling SR-IOV via config space accesses to the parent PF,
sriov_disable() first removes the PCI devices representing the VFs.
Since commit 9d16947b7583 ("PCI: Add global pci_lock_rescan_remove()")
such removal operations are serialized against concurrent remove and
rescan using the pci_rescan_remove_lock. No such locking was ever added
in sriov_disable() however. In particular when commit 18f9e9d150fc
("PCI/IOV: Factor out sriov_add_vfs()") factored out the PCI device
removal into sriov_del_vfs() there was still no locking around the
pci_iov_remove_virtfn() calls.
On s390 the lack of serialization in sriov_disable() may cause double
remove and list corruption with the below (amended) trace being observed:
PSW: 0704c00180000000 0000000c914e4b38 (klist_put+56)
GPRS: 000003800313fb48 0000000000000000 0000000100000001 0000000000000001
00000000f9b520a8 0000000000000000 0000000000002fbd 00000000f4cc9480
0000000000000001 0000000000000000 0000000000000000 0000000180692828
00000000818e8000 000003800313fe2c 000003800313fb20 000003800313fad8
#0 [3800313fb20] device_del at c9158ad5c
#1 [3800313fb88] pci_remove_bus_device at c915105ba
#2 [3800313fbd0] pci_iov_remove_virtfn at c9152f198
#3 [3800313fc28] zpci_iov_remove_virtfn at c90fb67c0
#4 [3800313fc60] zpci_bus_remove_device at c90fb6104
#5 [3800313fca0] __zpci_event_availability at c90fb3dca
#6 [3800313fd08] chsc_process_sei_nt0 at c918fe4a2
#7 [3800313fd60] crw_collect_info at c91905822
#8 [3800313fe10] kthread at c90feb390
#9 [3800313fe68] __ret_from_fork at c90f6aa64
#10 [3800313fe98] ret_from_fork at c9194f3f2.
This is because in addition to sriov_disable() removing the VFs, the
platform also generates hot-unplug events for the VFs. This being the
reverse operation to the hotplug events generated by sriov_enable() and
handled via pdev->no_vf_scan. And while the event processing takes
pci_rescan_remove_lock and checks whether the struct pci_dev still exists,
the lack of synchronization makes this checking racy.
Other races may also be possible of course though given that this lack of
locking persisted so long observable races seem very rare. Even on s390 the
list corruption was only observed with certain devices since the platform
events are only triggered by config accesses after the removal, so as long
as the removal finished synchronously they would not race. Either way the
locking is missing so fix this by adding it to the sriov_del_vfs() helper.
Just like PCI rescan-remove, locking is also missing in sriov_add_vfs()
including for the error case where pci_stop_and_remove_bus_device() is
called without the PCI rescan-remove lock being held. Even in the non-error
case, adding new PCI devices and buses should be serialized via the PCI
rescan-remove lock. Add the necessary locking. |
| In the Linux kernel, the following vulnerability has been resolved:
sctp: avoid NULL dereference when chunk data buffer is missing
chunk->skb pointer is dereferenced in the if-block where it's supposed
to be NULL only.
chunk->skb can only be NULL if chunk->head_skb is not. Check for frag_list
instead and do it just before replacing chunk->skb. We're sure that
otherwise chunk->skb is non-NULL because of outer if() condition. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/panthor: Fix kernel panic on partial unmap of a GPU VA region
This commit address a kernel panic issue that can happen if Userspace
tries to partially unmap a GPU virtual region (aka drm_gpuva).
The VM_BIND interface allows partial unmapping of a BO.
Panthor driver pre-allocates memory for the new drm_gpuva structures
that would be needed for the map/unmap operation, done using drm_gpuvm
layer. It expected that only one new drm_gpuva would be needed on umap
but a partial unmap can require 2 new drm_gpuva and that's why it
ended up doing a NULL pointer dereference causing a kernel panic.
Following dump was seen when partial unmap was exercised.
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000078
Mem abort info:
ESR = 0x0000000096000046
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x06: level 2 translation fault
Data abort info:
ISV = 0, ISS = 0x00000046, ISS2 = 0x00000000
CM = 0, WnR = 1, TnD = 0, TagAccess = 0
GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
user pgtable: 4k pages, 48-bit VAs, pgdp=000000088a863000
[000000000000078] pgd=080000088a842003, p4d=080000088a842003, pud=0800000884bf5003, pmd=0000000000000000
Internal error: Oops: 0000000096000046 [#1] PREEMPT SMP
<snip>
pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : panthor_gpuva_sm_step_remap+0xe4/0x330 [panthor]
lr : panthor_gpuva_sm_step_remap+0x6c/0x330 [panthor]
sp : ffff800085d43970
x29: ffff800085d43970 x28: ffff00080363e440 x27: ffff0008090c6000
x26: 0000000000000030 x25: ffff800085d439f8 x24: ffff00080d402000
x23: ffff800085d43b60 x22: ffff800085d439e0 x21: ffff00080abdb180
x20: 0000000000000000 x19: 0000000000000000 x18: 0000000000000010
x17: 6e656c202c303030 x16: 3666666666646466 x15: 393d61766f69202c
x14: 312d3d7361203a70 x13: 303030323d6e656c x12: ffff80008324bf58
x11: 0000000000000003 x10: 0000000000000002 x9 : ffff8000801a6a9c
x8 : ffff00080360b300 x7 : 0000000000000000 x6 : 000000088aa35fc7
x5 : fff1000080000000 x4 : ffff8000842ddd30 x3 : 0000000000000001
x2 : 0000000100000000 x1 : 0000000000000001 x0 : 0000000000000078
Call trace:
panthor_gpuva_sm_step_remap+0xe4/0x330 [panthor]
op_remap_cb.isra.22+0x50/0x80
__drm_gpuvm_sm_unmap+0x10c/0x1c8
drm_gpuvm_sm_unmap+0x40/0x60
panthor_vm_exec_op+0xb4/0x3d0 [panthor]
panthor_vm_bind_exec_sync_op+0x154/0x278 [panthor]
panthor_ioctl_vm_bind+0x160/0x4a0 [panthor]
drm_ioctl_kernel+0xbc/0x138
drm_ioctl+0x240/0x500
__arm64_sys_ioctl+0xb0/0xf8
invoke_syscall+0x4c/0x110
el0_svc_common.constprop.1+0x98/0xf8
do_el0_svc+0x24/0x38
el0_svc+0x40/0xf8
el0t_64_sync_handler+0xa0/0xc8
el0t_64_sync+0x174/0x178 |
| In the Linux kernel, the following vulnerability has been resolved:
mm/damon/sysfs: catch commit test ctx alloc failure
Patch series "mm/damon/sysfs: fix commit test damon_ctx [de]allocation".
DAMON sysfs interface dynamically allocates and uses a damon_ctx object
for testing if given inputs for online DAMON parameters update is valid.
The object is being used without an allocation failure check, and leaked
when the test succeeds. Fix the two bugs.
This patch (of 2):
The damon_ctx for testing online DAMON parameters commit inputs is used
without its allocation failure check. This could result in an invalid
memory access. Fix it by directly returning an error when the allocation
failed. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: Fix IPsec cleanup over MPV device
When we do mlx5e_detach_netdev() we eventually disable blocking events
notifier, among those events are IPsec MPV events from IB to core.
So before disabling those blocking events, make sure to also unregister
the devcom device and mark all this device operations as complete,
in order to prevent the other device from using invalid netdev
during future devcom events which could cause the trace below.
BUG: kernel NULL pointer dereference, address: 0000000000000010
PGD 146427067 P4D 146427067 PUD 146488067 PMD 0
Oops: Oops: 0000 [#1] SMP
CPU: 1 UID: 0 PID: 7735 Comm: devlink Tainted: GW 6.12.0-rc6_for_upstream_min_debug_2024_11_08_00_46 #1
Tainted: [W]=WARN
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
RIP: 0010:mlx5_devcom_comp_set_ready+0x5/0x40 [mlx5_core]
Code: 00 01 48 83 05 23 32 1e 00 01 41 b8 ed ff ff ff e9 60 ff ff ff 48 83 05 00 32 1e 00 01 eb e3 66 0f 1f 44 00 00 0f 1f 44 00 00 <48> 8b 47 10 48 83 05 5f 32 1e 00 01 48 8b 50 40 48 85 d2 74 05 40
RSP: 0018:ffff88811a5c35f8 EFLAGS: 00010206
RAX: ffff888106e8ab80 RBX: ffff888107d7e200 RCX: ffff88810d6f0a00
RDX: ffff88810d6f0a00 RSI: 0000000000000001 RDI: 0000000000000000
RBP: ffff88811a17e620 R08: 0000000000000040 R09: 0000000000000000
R10: ffff88811a5c3618 R11: 0000000de85d51bd R12: ffff88811a17e600
R13: ffff88810d6f0a00 R14: 0000000000000000 R15: ffff8881034bda80
FS: 00007f27bdf89180(0000) GS:ffff88852c880000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000010 CR3: 000000010f159005 CR4: 0000000000372eb0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
? __die+0x20/0x60
? page_fault_oops+0x150/0x3e0
? exc_page_fault+0x74/0x130
? asm_exc_page_fault+0x22/0x30
? mlx5_devcom_comp_set_ready+0x5/0x40 [mlx5_core]
mlx5e_devcom_event_mpv+0x42/0x60 [mlx5_core]
mlx5_devcom_send_event+0x8c/0x170 [mlx5_core]
blocking_event+0x17b/0x230 [mlx5_core]
notifier_call_chain+0x35/0xa0
blocking_notifier_call_chain+0x3d/0x60
mlx5_blocking_notifier_call_chain+0x22/0x30 [mlx5_core]
mlx5_core_mp_event_replay+0x12/0x20 [mlx5_core]
mlx5_ib_bind_slave_port+0x228/0x2c0 [mlx5_ib]
mlx5_ib_stage_init_init+0x664/0x9d0 [mlx5_ib]
? idr_alloc_cyclic+0x50/0xb0
? __kmalloc_cache_noprof+0x167/0x340
? __kmalloc_noprof+0x1a7/0x430
__mlx5_ib_add+0x34/0xd0 [mlx5_ib]
mlx5r_probe+0xe9/0x310 [mlx5_ib]
? kernfs_add_one+0x107/0x150
? __mlx5_ib_add+0xd0/0xd0 [mlx5_ib]
auxiliary_bus_probe+0x3e/0x90
really_probe+0xc5/0x3a0
? driver_probe_device+0x90/0x90
__driver_probe_device+0x80/0x160
driver_probe_device+0x1e/0x90
__device_attach_driver+0x7d/0x100
bus_for_each_drv+0x80/0xd0
__device_attach+0xbc/0x1f0
bus_probe_device+0x86/0xa0
device_add+0x62d/0x830
__auxiliary_device_add+0x3b/0xa0
? auxiliary_device_init+0x41/0x90
add_adev+0xd1/0x150 [mlx5_core]
mlx5_rescan_drivers_locked+0x21c/0x300 [mlx5_core]
esw_mode_change+0x6c/0xc0 [mlx5_core]
mlx5_devlink_eswitch_mode_set+0x21e/0x640 [mlx5_core]
devlink_nl_eswitch_set_doit+0x60/0xe0
genl_family_rcv_msg_doit+0xd0/0x120
genl_rcv_msg+0x180/0x2b0
? devlink_get_from_attrs_lock+0x170/0x170
? devlink_nl_eswitch_get_doit+0x290/0x290
? devlink_nl_pre_doit_port_optional+0x50/0x50
? genl_family_rcv_msg_dumpit+0xf0/0xf0
netlink_rcv_skb+0x54/0x100
genl_rcv+0x24/0x40
netlink_unicast+0x1fc/0x2d0
netlink_sendmsg+0x1e4/0x410
__sock_sendmsg+0x38/0x60
? sockfd_lookup_light+0x12/0x60
__sys_sendto+0x105/0x160
? __sys_recvmsg+0x4e/0x90
__x64_sys_sendto+0x20/0x30
do_syscall_64+0x4c/0x100
entry_SYSCALL_64_after_hwframe+0x4b/0x53
RIP: 0033:0x7f27bc91b13a
Code: bb 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 8b 05 fa 96 2c 00 45 89 c9 4c 63 d1 48 63 ff 85 c0 75 15 b8 2c 00 00 00 0f 05 <48> 3d 00 f0 ff ff
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
gpio: cdev: make sure the cdev fd is still active before emitting events
With the final call to fput() on a file descriptor, the release action
may be deferred and scheduled on a work queue. The reference count of
that descriptor is still zero and it must not be used. It's possible
that a GPIO change, we want to notify the user-space about, happens
AFTER the reference count on the file descriptor associated with the
character device went down to zero but BEFORE the .release() callback
was called from the workqueue and so BEFORE we unregistered from the
notifier.
Using the regular get_file() routine in this situation triggers the
following warning:
struct file::f_count incremented from zero; use-after-free condition present!
So use the get_file_active() variant that will return NULL on file
descriptors that have been or are being released. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/damon/vaddr: do not repeat pte_offset_map_lock() until success
DAMON's virtual address space operation set implementation (vaddr) calls
pte_offset_map_lock() inside the page table walk callback function. This
is for reading and writing page table accessed bits. If
pte_offset_map_lock() fails, it retries by returning the page table walk
callback function with ACTION_AGAIN.
pte_offset_map_lock() can continuously fail if the target is a pmd
migration entry, though. Hence it could cause an infinite page table walk
if the migration cannot be done until the page table walk is finished.
This indeed caused a soft lockup when CPU hotplugging and DAMON were
running in parallel.
Avoid the infinite loop by simply not retrying the page table walk. DAMON
is promising only a best-effort accuracy, so missing access to such pages
is no problem. |
| In the Linux kernel, the following vulnerability has been resolved:
net: core: prevent NULL deref in generic_hwtstamp_ioctl_lower()
The ethtool tsconfig Netlink path can trigger a null pointer
dereference. A call chain such as:
tsconfig_prepare_data() ->
dev_get_hwtstamp_phylib() ->
vlan_hwtstamp_get() ->
generic_hwtstamp_get_lower() ->
generic_hwtstamp_ioctl_lower()
results in generic_hwtstamp_ioctl_lower() being called with
kernel_cfg->ifr as NULL.
The generic_hwtstamp_ioctl_lower() function does not expect
a NULL ifr and dereferences it, leading to a system crash.
Fix this by adding a NULL check for kernel_cfg->ifr in
generic_hwtstamp_ioctl_lower(). If ifr is NULL, return -EINVAL. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/damon/sysfs: dealloc commit test ctx always
The damon_ctx for testing online DAMON parameters commit inputs is
deallocated only when the test fails. This means memory is leaked for
every successful online DAMON parameters commit. Fix the leak by always
deallocating it. |
| In the Linux kernel, the following vulnerability has been resolved:
hfs: fix KMSAN uninit-value issue in hfs_find_set_zero_bits()
The syzbot reported issue in hfs_find_set_zero_bits():
=====================================================
BUG: KMSAN: uninit-value in hfs_find_set_zero_bits+0x74d/0xb60 fs/hfs/bitmap.c:45
hfs_find_set_zero_bits+0x74d/0xb60 fs/hfs/bitmap.c:45
hfs_vbm_search_free+0x13c/0x5b0 fs/hfs/bitmap.c:151
hfs_extend_file+0x6a5/0x1b00 fs/hfs/extent.c:408
hfs_get_block+0x435/0x1150 fs/hfs/extent.c:353
__block_write_begin_int+0xa76/0x3030 fs/buffer.c:2151
block_write_begin fs/buffer.c:2262 [inline]
cont_write_begin+0x10e1/0x1bc0 fs/buffer.c:2601
hfs_write_begin+0x85/0x130 fs/hfs/inode.c:52
cont_expand_zero fs/buffer.c:2528 [inline]
cont_write_begin+0x35a/0x1bc0 fs/buffer.c:2591
hfs_write_begin+0x85/0x130 fs/hfs/inode.c:52
hfs_file_truncate+0x1d6/0xe60 fs/hfs/extent.c:494
hfs_inode_setattr+0x964/0xaa0 fs/hfs/inode.c:654
notify_change+0x1993/0x1aa0 fs/attr.c:552
do_truncate+0x28f/0x310 fs/open.c:68
do_ftruncate+0x698/0x730 fs/open.c:195
do_sys_ftruncate fs/open.c:210 [inline]
__do_sys_ftruncate fs/open.c:215 [inline]
__se_sys_ftruncate fs/open.c:213 [inline]
__x64_sys_ftruncate+0x11b/0x250 fs/open.c:213
x64_sys_call+0xfe3/0x3db0 arch/x86/include/generated/asm/syscalls_64.h:78
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xd9/0x210 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Uninit was created at:
slab_post_alloc_hook mm/slub.c:4154 [inline]
slab_alloc_node mm/slub.c:4197 [inline]
__kmalloc_cache_noprof+0x7f7/0xed0 mm/slub.c:4354
kmalloc_noprof include/linux/slab.h:905 [inline]
hfs_mdb_get+0x1cc8/0x2a90 fs/hfs/mdb.c:175
hfs_fill_super+0x3d0/0xb80 fs/hfs/super.c:337
get_tree_bdev_flags+0x6e3/0x920 fs/super.c:1681
get_tree_bdev+0x38/0x50 fs/super.c:1704
hfs_get_tree+0x35/0x40 fs/hfs/super.c:388
vfs_get_tree+0xb0/0x5c0 fs/super.c:1804
do_new_mount+0x738/0x1610 fs/namespace.c:3902
path_mount+0x6db/0x1e90 fs/namespace.c:4226
do_mount fs/namespace.c:4239 [inline]
__do_sys_mount fs/namespace.c:4450 [inline]
__se_sys_mount+0x6eb/0x7d0 fs/namespace.c:4427
__x64_sys_mount+0xe4/0x150 fs/namespace.c:4427
x64_sys_call+0xfa7/0x3db0 arch/x86/include/generated/asm/syscalls_64.h:166
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xd9/0x210 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
CPU: 1 UID: 0 PID: 12609 Comm: syz.1.2692 Not tainted 6.16.0-syzkaller #0 PREEMPT(none)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/12/2025
=====================================================
The HFS_SB(sb)->bitmap buffer is allocated in hfs_mdb_get():
HFS_SB(sb)->bitmap = kmalloc(8192, GFP_KERNEL);
Finally, it can trigger the reported issue because kmalloc()
doesn't clear the allocated memory. If allocated memory contains
only zeros, then everything will work pretty fine.
But if the allocated memory contains the "garbage", then
it can affect the bitmap operations and it triggers
the reported issue.
This patch simply exchanges the kmalloc() on kzalloc()
with the goal to guarantee the correctness of bitmap operations.
Because, newly created allocation bitmap should have all
available blocks free. Potentially, initialization bitmap's read
operation could not fill the whole allocated memory and
"garbage" in the not initialized memory will be the reason of
volume coruptions and file system driver bugs. |
| In the Linux kernel, the following vulnerability has been resolved:
hfsplus: fix KMSAN uninit-value issue in __hfsplus_ext_cache_extent()
The syzbot reported issue in __hfsplus_ext_cache_extent():
[ 70.194323][ T9350] BUG: KMSAN: uninit-value in __hfsplus_ext_cache_extent+0x7d0/0x990
[ 70.195022][ T9350] __hfsplus_ext_cache_extent+0x7d0/0x990
[ 70.195530][ T9350] hfsplus_file_extend+0x74f/0x1cf0
[ 70.195998][ T9350] hfsplus_get_block+0xe16/0x17b0
[ 70.196458][ T9350] __block_write_begin_int+0x962/0x2ce0
[ 70.196959][ T9350] cont_write_begin+0x1000/0x1950
[ 70.197416][ T9350] hfsplus_write_begin+0x85/0x130
[ 70.197873][ T9350] generic_perform_write+0x3e8/0x1060
[ 70.198374][ T9350] __generic_file_write_iter+0x215/0x460
[ 70.198892][ T9350] generic_file_write_iter+0x109/0x5e0
[ 70.199393][ T9350] vfs_write+0xb0f/0x14e0
[ 70.199771][ T9350] ksys_write+0x23e/0x490
[ 70.200149][ T9350] __x64_sys_write+0x97/0xf0
[ 70.200570][ T9350] x64_sys_call+0x3015/0x3cf0
[ 70.201065][ T9350] do_syscall_64+0xd9/0x1d0
[ 70.201506][ T9350] entry_SYSCALL_64_after_hwframe+0x77/0x7f
[ 70.202054][ T9350]
[ 70.202279][ T9350] Uninit was created at:
[ 70.202693][ T9350] __kmalloc_noprof+0x621/0xf80
[ 70.203149][ T9350] hfsplus_find_init+0x8d/0x1d0
[ 70.203602][ T9350] hfsplus_file_extend+0x6ca/0x1cf0
[ 70.204087][ T9350] hfsplus_get_block+0xe16/0x17b0
[ 70.204561][ T9350] __block_write_begin_int+0x962/0x2ce0
[ 70.205074][ T9350] cont_write_begin+0x1000/0x1950
[ 70.205547][ T9350] hfsplus_write_begin+0x85/0x130
[ 70.206017][ T9350] generic_perform_write+0x3e8/0x1060
[ 70.206519][ T9350] __generic_file_write_iter+0x215/0x460
[ 70.207042][ T9350] generic_file_write_iter+0x109/0x5e0
[ 70.207552][ T9350] vfs_write+0xb0f/0x14e0
[ 70.207961][ T9350] ksys_write+0x23e/0x490
[ 70.208375][ T9350] __x64_sys_write+0x97/0xf0
[ 70.208810][ T9350] x64_sys_call+0x3015/0x3cf0
[ 70.209255][ T9350] do_syscall_64+0xd9/0x1d0
[ 70.209680][ T9350] entry_SYSCALL_64_after_hwframe+0x77/0x7f
[ 70.210230][ T9350]
[ 70.210454][ T9350] CPU: 2 UID: 0 PID: 9350 Comm: repro Not tainted 6.12.0-rc5 #5
[ 70.211174][ T9350] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
[ 70.212115][ T9350] =====================================================
[ 70.212734][ T9350] Disabling lock debugging due to kernel taint
[ 70.213284][ T9350] Kernel panic - not syncing: kmsan.panic set ...
[ 70.213858][ T9350] CPU: 2 UID: 0 PID: 9350 Comm: repro Tainted: G B 6.12.0-rc5 #5
[ 70.214679][ T9350] Tainted: [B]=BAD_PAGE
[ 70.215057][ T9350] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
[ 70.215999][ T9350] Call Trace:
[ 70.216309][ T9350] <TASK>
[ 70.216585][ T9350] dump_stack_lvl+0x1fd/0x2b0
[ 70.217025][ T9350] dump_stack+0x1e/0x30
[ 70.217421][ T9350] panic+0x502/0xca0
[ 70.217803][ T9350] ? kmsan_get_metadata+0x13e/0x1c0
[ 70.218294][ Message fromT sy9350] kmsan_report+0x296/slogd@syzkaller 0x2aat Aug 18 22:11:058 ...
kernel
:[ 70.213284][ T9350] Kernel panic - not syncing: kmsan.panic [ 70.220179][ T9350] ? kmsan_get_metadata+0x13e/0x1c0
set ...
[ 70.221254][ T9350] ? __msan_warning+0x96/0x120
[ 70.222066][ T9350] ? __hfsplus_ext_cache_extent+0x7d0/0x990
[ 70.223023][ T9350] ? hfsplus_file_extend+0x74f/0x1cf0
[ 70.224120][ T9350] ? hfsplus_get_block+0xe16/0x17b0
[ 70.224946][ T9350] ? __block_write_begin_int+0x962/0x2ce0
[ 70.225756][ T9350] ? cont_write_begin+0x1000/0x1950
[ 70.226337][ T9350] ? hfsplus_write_begin+0x85/0x130
[ 70.226852][ T9350] ? generic_perform_write+0x3e8/0x1060
[ 70.227405][ T9350] ? __generic_file_write_iter+0x215/0x460
[ 70.227979][ T9350] ? generic_file_write_iter+0x109/0x5e0
[ 70.228540][ T9350] ? vfs_write+0xb0f/0x14e0
[ 70.228997][ T9350] ? ksys_write+0x23e/0x490
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: directly free partially initialized fs_info in btrfs_check_leaked_roots()
If fs_info->super_copy or fs_info->super_for_commit allocated failed in
btrfs_get_tree_subvol(), then no need to call btrfs_free_fs_info().
Otherwise btrfs_check_leaked_roots() would access NULL pointer because
fs_info->allocated_roots had not been initialised.
syzkaller reported the following information:
------------[ cut here ]------------
BUG: unable to handle page fault for address: fffffffffffffbb0
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 64c9067 P4D 64c9067 PUD 64cb067 PMD 0
Oops: Oops: 0000 [#1] SMP KASAN PTI
CPU: 0 UID: 0 PID: 1402 Comm: syz.1.35 Not tainted 6.15.8 #4 PREEMPT(lazy)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), (...)
RIP: 0010:arch_atomic_read arch/x86/include/asm/atomic.h:23 [inline]
RIP: 0010:raw_atomic_read include/linux/atomic/atomic-arch-fallback.h:457 [inline]
RIP: 0010:atomic_read include/linux/atomic/atomic-instrumented.h:33 [inline]
RIP: 0010:refcount_read include/linux/refcount.h:170 [inline]
RIP: 0010:btrfs_check_leaked_roots+0x18f/0x2c0 fs/btrfs/disk-io.c:1230
[...]
Call Trace:
<TASK>
btrfs_free_fs_info+0x310/0x410 fs/btrfs/disk-io.c:1280
btrfs_get_tree_subvol+0x592/0x6b0 fs/btrfs/super.c:2029
btrfs_get_tree+0x63/0x80 fs/btrfs/super.c:2097
vfs_get_tree+0x98/0x320 fs/super.c:1759
do_new_mount+0x357/0x660 fs/namespace.c:3899
path_mount+0x716/0x19c0 fs/namespace.c:4226
do_mount fs/namespace.c:4239 [inline]
__do_sys_mount fs/namespace.c:4450 [inline]
__se_sys_mount fs/namespace.c:4427 [inline]
__x64_sys_mount+0x28c/0x310 fs/namespace.c:4427
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0x92/0x180 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x7f032eaffa8d
[...] |
| In the Linux kernel, the following vulnerability has been resolved:
nios2: ensure that memblock.current_limit is set when setting pfn limits
On nios2, with CONFIG_FLATMEM set, the kernel relies on
memblock_get_current_limit() to determine the limits of mem_map, in
particular for max_low_pfn.
Unfortunately, memblock.current_limit is only default initialized to
MEMBLOCK_ALLOC_ANYWHERE at this point of the bootup, potentially leading
to situations where max_low_pfn can erroneously exceed the value of
max_pfn and, thus, the valid range of available DRAM.
This can in turn cause kernel-level paging failures, e.g.:
[ 76.900000] Unable to handle kernel paging request at virtual address 20303000
[ 76.900000] ea = c0080890, ra = c000462c, cause = 14
[ 76.900000] Kernel panic - not syncing: Oops
[ 76.900000] ---[ end Kernel panic - not syncing: Oops ]---
This patch fixes this by pre-calculating memblock.current_limit
based on the upper limits of the available memory ranges via
adjust_lowmem_bounds, a simplified version of the equivalent
implementation within the arm architecture. |
| In the Linux kernel, the following vulnerability has been resolved:
tty: serial: sh-sci: fix RSCI FIFO overrun handling
The receive error handling code is shared between RSCI and all other
SCIF port types, but the RSCI overrun_reg is specified as a memory
offset, while for other SCIF types it is an enum value used to index
into the sci_port_params->regs array, as mentioned above the
sci_serial_in() function.
For RSCI, the overrun_reg is CSR (0x48), causing the sci_getreg() call
inside the sci_handle_fifo_overrun() function to index outside the
bounds of the regs array, which currently has a size of 20, as specified
by SCI_NR_REGS.
Because of this, we end up accessing memory outside of RSCI's
rsci_port_params structure, which, when interpreted as a plat_sci_reg,
happens to have a non-zero size, causing the following WARN when
sci_serial_in() is called, as the accidental size does not match the
supported register sizes.
The existence of the overrun_reg needs to be checked because
SCIx_SH3_SCIF_REGTYPE has overrun_reg set to SCLSR, but SCLSR is not
present in the regs array.
Avoid calling sci_getreg() for port types which don't use standard
register handling.
Use the ops->read_reg() and ops->write_reg() functions to properly read
and write registers for RSCI, and change the type of the status variable
to accommodate the 32-bit CSR register.
sci_getreg() and sci_serial_in() are also called with overrun_reg in the
sci_mpxed_interrupt() interrupt handler, but that code path is not used
for RSCI, as it does not have a muxed interrupt.
------------[ cut here ]------------
Invalid register access
WARNING: CPU: 0 PID: 0 at drivers/tty/serial/sh-sci.c:522 sci_serial_in+0x38/0xac
Modules linked in: renesas_usbhs at24 rzt2h_adc industrialio_adc sha256 cfg80211 bluetooth ecdh_generic ecc rfkill fuse drm backlight ipv6
CPU: 0 UID: 0 PID: 0 Comm: swapper/0 Not tainted 6.17.0-rc1+ #30 PREEMPT
Hardware name: Renesas RZ/T2H EVK Board based on r9a09g077m44 (DT)
pstate: 604000c5 (nZCv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : sci_serial_in+0x38/0xac
lr : sci_serial_in+0x38/0xac
sp : ffff800080003e80
x29: ffff800080003e80 x28: ffff800082195b80 x27: 000000000000000d
x26: ffff8000821956d0 x25: 0000000000000000 x24: ffff800082195b80
x23: ffff000180e0d800 x22: 0000000000000010 x21: 0000000000000000
x20: 0000000000000010 x19: ffff000180e72000 x18: 000000000000000a
x17: ffff8002bcee7000 x16: ffff800080000000 x15: 0720072007200720
x14: 0720072007200720 x13: 0720072007200720 x12: 0720072007200720
x11: 0000000000000058 x10: 0000000000000018 x9 : ffff8000821a6a48
x8 : 0000000000057fa8 x7 : 0000000000000406 x6 : ffff8000821fea48
x5 : ffff00033ef88408 x4 : ffff8002bcee7000 x3 : ffff800082195b80
x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff800082195b80
Call trace:
sci_serial_in+0x38/0xac (P)
sci_handle_fifo_overrun.isra.0+0x70/0x134
sci_er_interrupt+0x50/0x39c
__handle_irq_event_percpu+0x48/0x140
handle_irq_event+0x44/0xb0
handle_fasteoi_irq+0xf4/0x1a0
handle_irq_desc+0x34/0x58
generic_handle_domain_irq+0x1c/0x28
gic_handle_irq+0x4c/0x140
call_on_irq_stack+0x30/0x48
do_interrupt_handler+0x80/0x84
el1_interrupt+0x34/0x68
el1h_64_irq_handler+0x18/0x24
el1h_64_irq+0x6c/0x70
default_idle_call+0x28/0x58 (P)
do_idle+0x1f8/0x250
cpu_startup_entry+0x34/0x3c
rest_init+0xd8/0xe0
console_on_rootfs+0x0/0x6c
__primary_switched+0x88/0x90
---[ end trace 0000000000000000 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
xfs: fix out of bounds memory read error in symlink repair
xfs/286 produced this report on my test fleet:
==================================================================
BUG: KFENCE: out-of-bounds read in memcpy_orig+0x54/0x110
Out-of-bounds read at 0xffff88843fe9e038 (184B right of kfence-#184):
memcpy_orig+0x54/0x110
xrep_symlink_salvage_inline+0xb3/0xf0 [xfs]
xrep_symlink_salvage+0x100/0x110 [xfs]
xrep_symlink+0x2e/0x80 [xfs]
xrep_attempt+0x61/0x1f0 [xfs]
xfs_scrub_metadata+0x34f/0x5c0 [xfs]
xfs_ioc_scrubv_metadata+0x387/0x560 [xfs]
xfs_file_ioctl+0xe23/0x10e0 [xfs]
__x64_sys_ioctl+0x76/0xc0
do_syscall_64+0x4e/0x1e0
entry_SYSCALL_64_after_hwframe+0x4b/0x53
kfence-#184: 0xffff88843fe9df80-0xffff88843fe9dfea, size=107, cache=kmalloc-128
allocated by task 3470 on cpu 1 at 263329.131592s (192823.508886s ago):
xfs_init_local_fork+0x79/0xe0 [xfs]
xfs_iformat_local+0xa4/0x170 [xfs]
xfs_iformat_data_fork+0x148/0x180 [xfs]
xfs_inode_from_disk+0x2cd/0x480 [xfs]
xfs_iget+0x450/0xd60 [xfs]
xfs_bulkstat_one_int+0x6b/0x510 [xfs]
xfs_bulkstat_iwalk+0x1e/0x30 [xfs]
xfs_iwalk_ag_recs+0xdf/0x150 [xfs]
xfs_iwalk_run_callbacks+0xb9/0x190 [xfs]
xfs_iwalk_ag+0x1dc/0x2f0 [xfs]
xfs_iwalk_args.constprop.0+0x6a/0x120 [xfs]
xfs_iwalk+0xa4/0xd0 [xfs]
xfs_bulkstat+0xfa/0x170 [xfs]
xfs_ioc_fsbulkstat.isra.0+0x13a/0x230 [xfs]
xfs_file_ioctl+0xbf2/0x10e0 [xfs]
__x64_sys_ioctl+0x76/0xc0
do_syscall_64+0x4e/0x1e0
entry_SYSCALL_64_after_hwframe+0x4b/0x53
CPU: 1 UID: 0 PID: 1300113 Comm: xfs_scrub Not tainted 6.18.0-rc4-djwx #rc4 PREEMPT(lazy) 3d744dd94e92690f00a04398d2bd8631dcef1954
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.0-4.module+el8.8.0+21164+ed375313 04/01/2014
==================================================================
On further analysis, I realized that the second parameter to min() is
not correct. xfs_ifork::if_bytes is the size of the xfs_ifork::if_data
buffer. if_bytes can be smaller than the data fork size because:
(a) the forkoff code tries to keep the data area as large as possible
(b) for symbolic links, if_bytes is the ondisk file size + 1
(c) forkoff is always a multiple of 8.
Case in point: for a single-byte symlink target, forkoff will be
8 but the buffer will only be 2 bytes long.
In other words, the logic here is wrong and we walk off the end of the
incore buffer. Fix that. |
| In the Linux kernel, the following vulnerability has been resolved:
platform/x86: alienware-wmi-wmax: Fix NULL pointer dereference in sleep handlers
Devices without the AWCC interface don't initialize `awcc`. Add a check
before dereferencing it in sleep handlers. |