| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd: Fix UBSAN array-index-out-of-bounds for SMU7
For pptable structs that use flexible array sizes, use flexible arrays. |
| In the Linux kernel, the following vulnerability has been resolved:
fs/jfs: Add check for negative db_l2nbperpage
l2nbperpage is log2(number of blks per page), and the minimum legal
value should be 0, not negative.
In the case of l2nbperpage being negative, an error will occur
when subsequently used as shift exponent.
Syzbot reported this bug:
UBSAN: shift-out-of-bounds in fs/jfs/jfs_dmap.c:799:12
shift exponent -16777216 is negative |
| In the Linux kernel, the following vulnerability has been resolved:
net: hns3: fix out-of-bounds access may occur when coalesce info is read via debugfs
The hns3 driver define an array of string to show the coalesce
info, but if the kernel adds a new mode or a new state,
out-of-bounds access may occur when coalesce info is read via
debugfs, this patch fix the problem. |
| In the Linux kernel, the following vulnerability has been resolved:
jfs: fix array-index-out-of-bounds in dbFindLeaf
Currently while searching for dmtree_t for sufficient free blocks there
is an array out of bounds while getting element in tp->dm_stree. To add
the required check for out of bound we first need to determine the type
of dmtree. Thus added an extra parameter to dbFindLeaf so that the type
of tree can be determined and the required check can be applied. |
| In the Linux kernel, the following vulnerability has been resolved:
thermal: intel: powerclamp: fix mismatch in get function for max_idle
KASAN reported this
[ 444.853098] BUG: KASAN: global-out-of-bounds in param_get_int+0x77/0x90
[ 444.853111] Read of size 4 at addr ffffffffc16c9220 by task cat/2105
...
[ 444.853442] The buggy address belongs to the variable:
[ 444.853443] max_idle+0x0/0xffffffffffffcde0 [intel_powerclamp]
There is a mismatch between the param_get_int and the definition of
max_idle. Replacing param_get_int with param_get_byte resolves this
issue. |
| In the Linux kernel, the following vulnerability has been resolved:
i3c: mipi-i3c-hci: Fix out of bounds access in hci_dma_irq_handler
Do not loop over ring headers in hci_dma_irq_handler() that are not
allocated and enabled in hci_dma_init(). Otherwise out of bounds access
will occur from rings->headers[i] access when i >= number of allocated
ring headers. |
| In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Fix oob in ntfs_listxattr
The length of name cannot exceed the space occupied by ea. |
| In the Linux kernel, the following vulnerability has been resolved:
FS:JFS:UBSAN:array-index-out-of-bounds in dbAdjTree
Syzkaller reported the following issue:
UBSAN: array-index-out-of-bounds in fs/jfs/jfs_dmap.c:2867:6
index 196694 is out of range for type 's8[1365]' (aka 'signed char[1365]')
CPU: 1 PID: 109 Comm: jfsCommit Not tainted 6.6.0-rc3-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/04/2023
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x1e7/0x2d0 lib/dump_stack.c:106
ubsan_epilogue lib/ubsan.c:217 [inline]
__ubsan_handle_out_of_bounds+0x11c/0x150 lib/ubsan.c:348
dbAdjTree+0x474/0x4f0 fs/jfs/jfs_dmap.c:2867
dbJoin+0x210/0x2d0 fs/jfs/jfs_dmap.c:2834
dbFreeBits+0x4eb/0xda0 fs/jfs/jfs_dmap.c:2331
dbFreeDmap fs/jfs/jfs_dmap.c:2080 [inline]
dbFree+0x343/0x650 fs/jfs/jfs_dmap.c:402
txFreeMap+0x798/0xd50 fs/jfs/jfs_txnmgr.c:2534
txUpdateMap+0x342/0x9e0
txLazyCommit fs/jfs/jfs_txnmgr.c:2664 [inline]
jfs_lazycommit+0x47a/0xb70 fs/jfs/jfs_txnmgr.c:2732
kthread+0x2d3/0x370 kernel/kthread.c:388
ret_from_fork+0x48/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x11/0x20 arch/x86/entry/entry_64.S:304
</TASK>
================================================================================
Kernel panic - not syncing: UBSAN: panic_on_warn set ...
CPU: 1 PID: 109 Comm: jfsCommit Not tainted 6.6.0-rc3-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/04/2023
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x1e7/0x2d0 lib/dump_stack.c:106
panic+0x30f/0x770 kernel/panic.c:340
check_panic_on_warn+0x82/0xa0 kernel/panic.c:236
ubsan_epilogue lib/ubsan.c:223 [inline]
__ubsan_handle_out_of_bounds+0x13c/0x150 lib/ubsan.c:348
dbAdjTree+0x474/0x4f0 fs/jfs/jfs_dmap.c:2867
dbJoin+0x210/0x2d0 fs/jfs/jfs_dmap.c:2834
dbFreeBits+0x4eb/0xda0 fs/jfs/jfs_dmap.c:2331
dbFreeDmap fs/jfs/jfs_dmap.c:2080 [inline]
dbFree+0x343/0x650 fs/jfs/jfs_dmap.c:402
txFreeMap+0x798/0xd50 fs/jfs/jfs_txnmgr.c:2534
txUpdateMap+0x342/0x9e0
txLazyCommit fs/jfs/jfs_txnmgr.c:2664 [inline]
jfs_lazycommit+0x47a/0xb70 fs/jfs/jfs_txnmgr.c:2732
kthread+0x2d3/0x370 kernel/kthread.c:388
ret_from_fork+0x48/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x11/0x20 arch/x86/entry/entry_64.S:304
</TASK>
Kernel Offset: disabled
Rebooting in 86400 seconds..
The issue is caused when the value of lp becomes greater than
CTLTREESIZE which is the max size of stree. Adding a simple check
solves this issue.
Dave:
As the function returns a void, good error handling
would require a more intrusive code reorganization, so I modified
Osama's patch at use WARN_ON_ONCE for lack of a cleaner option.
The patch is tested via syzbot. |
| In the Linux kernel, the following vulnerability has been resolved:
UBSAN: array-index-out-of-bounds in dtSplitRoot
Syzkaller reported the following issue:
oop0: detected capacity change from 0 to 32768
UBSAN: array-index-out-of-bounds in fs/jfs/jfs_dtree.c:1971:9
index -2 is out of range for type 'struct dtslot [128]'
CPU: 0 PID: 3613 Comm: syz-executor270 Not tainted 6.0.0-syzkaller-09423-g493ffd6605b2 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/22/2022
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x1b1/0x28e lib/dump_stack.c:106
ubsan_epilogue lib/ubsan.c:151 [inline]
__ubsan_handle_out_of_bounds+0xdb/0x130 lib/ubsan.c:283
dtSplitRoot+0x8d8/0x1900 fs/jfs/jfs_dtree.c:1971
dtSplitUp fs/jfs/jfs_dtree.c:985 [inline]
dtInsert+0x1189/0x6b80 fs/jfs/jfs_dtree.c:863
jfs_mkdir+0x757/0xb00 fs/jfs/namei.c:270
vfs_mkdir+0x3b3/0x590 fs/namei.c:4013
do_mkdirat+0x279/0x550 fs/namei.c:4038
__do_sys_mkdirat fs/namei.c:4053 [inline]
__se_sys_mkdirat fs/namei.c:4051 [inline]
__x64_sys_mkdirat+0x85/0x90 fs/namei.c:4051
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7fcdc0113fd9
Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 c0 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007ffeb8bc67d8 EFLAGS: 00000246 ORIG_RAX: 0000000000000102
RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007fcdc0113fd9
RDX: 0000000000000000 RSI: 0000000020000340 RDI: 0000000000000003
RBP: 00007fcdc00d37a0 R08: 0000000000000000 R09: 00007fcdc00d37a0
R10: 00005555559a72c0 R11: 0000000000000246 R12: 00000000f8008000
R13: 0000000000000000 R14: 00083878000000f8 R15: 0000000000000000
</TASK>
The issue is caused when the value of fsi becomes less than -1.
The check to break the loop when fsi value becomes -1 is present
but syzbot was able to produce value less than -1 which cause the error.
This patch simply add the change for the values less than 0.
The patch is tested via syzbot. |
| In the Linux kernel, the following vulnerability has been resolved:
jfs: fix slab-out-of-bounds Read in dtSearch
Currently while searching for current page in the sorted entry table
of the page there is a out of bound access. Added a bound check to fix
the error.
Dave:
Set return code to -EIO |
| In the Linux kernel, the following vulnerability has been resolved:
jfs: fix array-index-out-of-bounds in dbAdjTree
Currently there is a bound check missing in the dbAdjTree while
accessing the dmt_stree. To add the required check added the bool is_ctl
which is required to determine the size as suggest in the following
commit.
https://lore.kernel.org/linux-kernel-mentees/f9475918-2186-49b8-b801-6f0f9e75f4fa@oracle.com/ |
| In the Linux kernel, the following vulnerability has been resolved:
jfs: fix array-index-out-of-bounds in diNewExt
[Syz report]
UBSAN: array-index-out-of-bounds in fs/jfs/jfs_imap.c:2360:2
index -878706688 is out of range for type 'struct iagctl[128]'
CPU: 1 PID: 5065 Comm: syz-executor282 Not tainted 6.7.0-rc4-syzkaller-00009-gbee0e7762ad2 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 11/10/2023
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x1e7/0x2d0 lib/dump_stack.c:106
ubsan_epilogue lib/ubsan.c:217 [inline]
__ubsan_handle_out_of_bounds+0x11c/0x150 lib/ubsan.c:348
diNewExt+0x3cf3/0x4000 fs/jfs/jfs_imap.c:2360
diAllocExt fs/jfs/jfs_imap.c:1949 [inline]
diAllocAG+0xbe8/0x1e50 fs/jfs/jfs_imap.c:1666
diAlloc+0x1d3/0x1760 fs/jfs/jfs_imap.c:1587
ialloc+0x8f/0x900 fs/jfs/jfs_inode.c:56
jfs_mkdir+0x1c5/0xb90 fs/jfs/namei.c:225
vfs_mkdir+0x2f1/0x4b0 fs/namei.c:4106
do_mkdirat+0x264/0x3a0 fs/namei.c:4129
__do_sys_mkdir fs/namei.c:4149 [inline]
__se_sys_mkdir fs/namei.c:4147 [inline]
__x64_sys_mkdir+0x6e/0x80 fs/namei.c:4147
do_syscall_x64 arch/x86/entry/common.c:51 [inline]
do_syscall_64+0x45/0x110 arch/x86/entry/common.c:82
entry_SYSCALL_64_after_hwframe+0x63/0x6b
RIP: 0033:0x7fcb7e6a0b57
Code: ff ff 77 07 31 c0 c3 0f 1f 40 00 48 c7 c2 b8 ff ff ff f7 d8 64 89 02 b8 ff ff ff ff c3 66 0f 1f 44 00 00 b8 53 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007ffd83023038 EFLAGS: 00000286 ORIG_RAX: 0000000000000053
RAX: ffffffffffffffda RBX: 00000000ffffffff RCX: 00007fcb7e6a0b57
RDX: 00000000000a1020 RSI: 00000000000001ff RDI: 0000000020000140
RBP: 0000000020000140 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000286 R12: 00007ffd830230d0
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
[Analysis]
When the agstart is too large, it can cause agno overflow.
[Fix]
After obtaining agno, if the value is invalid, exit the subsequent process.
Modified the test from agno > MAXAG to agno >= MAXAG based on linux-next
report by kernel test robot (Dan Carpenter). |
| In the Linux kernel, the following vulnerability has been resolved:
s390/ptrace: handle setting of fpc register correctly
If the content of the floating point control (fpc) register of a traced
process is modified with the ptrace interface the new value is tested for
validity by temporarily loading it into the fpc register.
This may lead to corruption of the fpc register of the tracing process:
if an interrupt happens while the value is temporarily loaded into the
fpc register, and within interrupt context floating point or vector
registers are used, the current fp/vx registers are saved with
save_fpu_regs() assuming they belong to user space and will be loaded into
fp/vx registers when returning to user space.
test_fp_ctl() restores the original user space fpc register value, however
it will be discarded, when returning to user space.
In result the tracer will incorrectly continue to run with the value that
was supposed to be used for the traced process.
Fix this by saving fpu register contents with save_fpu_regs() before using
test_fp_ctl(). |
| In the Linux kernel, the following vulnerability has been resolved:
sysctl: Fix out of bounds access for empty sysctl registers
When registering tables to the sysctl subsystem there is a check to see
if header is a permanently empty directory (used for mounts). This check
evaluates the first element of the ctl_table. This results in an out of
bounds evaluation when registering empty directories.
The function register_sysctl_mount_point now passes a ctl_table of size
1 instead of size 0. It now relies solely on the type to identify
a permanently empty register.
Make sure that the ctl_table has at least one element before testing for
permanent emptiness. |
| In the Linux kernel, the following vulnerability has been resolved:
HID: intel-ish-hid: ipc: Disable and reenable ACPI GPE bit
The EHL (Elkhart Lake) based platforms provide a OOB (Out of band)
service, which allows to wakup device when the system is in S5 (Soft-Off
state). This OOB service can be enabled/disabled from BIOS settings. When
enabled, the ISH device gets PME wake capability. To enable PME wakeup,
driver also needs to enable ACPI GPE bit.
On resume, BIOS will clear the wakeup bit. So driver need to re-enable it
in resume function to keep the next wakeup capability. But this BIOS
clearing of wakeup bit doesn't decrement internal OS GPE reference count,
so this reenabling on every resume will cause reference count to overflow.
So first disable and reenable ACPI GPE bit using acpi_disable_gpe(). |
| In the Linux kernel, the following vulnerability has been resolved:
nfc: nci: assert requested protocol is valid
The protocol is used in a bit mask to determine if the protocol is
supported. Assert the provided protocol is less than the maximum
defined so it doesn't potentially perform a shift-out-of-bounds and
provide a clearer error for undefined protocols vs unsupported ones. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/alternatives: Disable KASAN in apply_alternatives()
Fei has reported that KASAN triggers during apply_alternatives() on
a 5-level paging machine:
BUG: KASAN: out-of-bounds in rcu_is_watching()
Read of size 4 at addr ff110003ee6419a0 by task swapper/0/0
...
__asan_load4()
rcu_is_watching()
trace_hardirqs_on()
text_poke_early()
apply_alternatives()
...
On machines with 5-level paging, cpu_feature_enabled(X86_FEATURE_LA57)
gets patched. It includes KASAN code, where KASAN_SHADOW_START depends on
__VIRTUAL_MASK_SHIFT, which is defined with cpu_feature_enabled().
KASAN gets confused when apply_alternatives() patches the
KASAN_SHADOW_START users. A test patch that makes KASAN_SHADOW_START
static, by replacing __VIRTUAL_MASK_SHIFT with 56, works around the issue.
Fix it for real by disabling KASAN while the kernel is patching alternatives.
[ mingo: updated the changelog ] |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/pseries/memhp: Fix access beyond end of drmem array
dlpar_memory_remove_by_index() may access beyond the bounds of the
drmem lmb array when the LMB lookup fails to match an entry with the
given DRC index. When the search fails, the cursor is left pointing to
&drmem_info->lmbs[drmem_info->n_lmbs], which is one element past the
last valid entry in the array. The debug message at the end of the
function then dereferences this pointer:
pr_debug("Failed to hot-remove memory at %llx\n",
lmb->base_addr);
This was found by inspection and confirmed with KASAN:
pseries-hotplug-mem: Attempting to hot-remove LMB, drc index 1234
==================================================================
BUG: KASAN: slab-out-of-bounds in dlpar_memory+0x298/0x1658
Read of size 8 at addr c000000364e97fd0 by task bash/949
dump_stack_lvl+0xa4/0xfc (unreliable)
print_report+0x214/0x63c
kasan_report+0x140/0x2e0
__asan_load8+0xa8/0xe0
dlpar_memory+0x298/0x1658
handle_dlpar_errorlog+0x130/0x1d0
dlpar_store+0x18c/0x3e0
kobj_attr_store+0x68/0xa0
sysfs_kf_write+0xc4/0x110
kernfs_fop_write_iter+0x26c/0x390
vfs_write+0x2d4/0x4e0
ksys_write+0xac/0x1a0
system_call_exception+0x268/0x530
system_call_vectored_common+0x15c/0x2ec
Allocated by task 1:
kasan_save_stack+0x48/0x80
kasan_set_track+0x34/0x50
kasan_save_alloc_info+0x34/0x50
__kasan_kmalloc+0xd0/0x120
__kmalloc+0x8c/0x320
kmalloc_array.constprop.0+0x48/0x5c
drmem_init+0x2a0/0x41c
do_one_initcall+0xe0/0x5c0
kernel_init_freeable+0x4ec/0x5a0
kernel_init+0x30/0x1e0
ret_from_kernel_user_thread+0x14/0x1c
The buggy address belongs to the object at c000000364e80000
which belongs to the cache kmalloc-128k of size 131072
The buggy address is located 0 bytes to the right of
allocated 98256-byte region [c000000364e80000, c000000364e97fd0)
==================================================================
pseries-hotplug-mem: Failed to hot-remove memory at 0
Log failed lookups with a separate message and dereference the
cursor only when it points to a valid entry. |
| In the Linux kernel, the following vulnerability has been resolved:
mac80211: validate extended element ID is present
Before attempting to parse an extended element, verify that
the extended element ID is present. |
| In the Linux kernel, the following vulnerability has been resolved:
vduse: check that offset is within bounds in get_config()
This condition checks "len" but it does not check "offset" and that
could result in an out of bounds read if "offset > dev->config_size".
The problem is that since both variables are unsigned the
"dev->config_size - offset" subtraction would result in a very high
unsigned value.
I think these checks might not be necessary because "len" and "offset"
are supposed to already have been validated using the
vhost_vdpa_config_validate() function. But I do not know the code
perfectly, and I like to be safe. |