| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Simple CMS 2.1 contains a persistent cross-site scripting vulnerability in user input parameters that allows remote attackers to inject malicious script code. Attackers can exploit the newUser and editUser modules to inject persistent scripts that execute on user list preview, potentially leading to session hijacking and application manipulation. |
| PHP Melody version 3.0 contains a remote SQL injection vulnerability in the video edit module that allows authenticated attackers to inject malicious SQL commands. Attackers can exploit the unvalidated 'vid' parameter to execute arbitrary database queries and potentially compromise the web application and database management system. |
| PHP Melody version 3.0 contains a persistent cross-site scripting vulnerability in the edit-video.php submitted parameter that allows remote attackers to inject malicious script code. Attackers can exploit this vulnerability to execute arbitrary JavaScript, potentially leading to session hijacking, persistent phishing, and manipulation of application modules. |
| Easy Cart Shopping Cart 2021 contains a non-persistent cross-site scripting vulnerability in the search module's keyword parameter. Remote attackers can inject malicious script code through the search input to compromise user sessions and manipulate application content. |
| EPSON EasyMP Network Projection 2.81 contains an unquoted service path vulnerability in the EMP_NSWLSV service that allows local users to potentially execute arbitrary code. Attackers can exploit the unquoted path in C:\Program Files (x86)\EPSON Projector\EasyMP Network Projection V2\ to inject malicious code that would execute with LocalSystem privileges. |
| DHCP Turbo 4.61298 contains an unquoted service path vulnerability that allows local attackers to potentially execute arbitrary code by exploiting the service binary path. Attackers can place malicious executables in the service path to gain elevated privileges when the service starts. |
| BOOTP Turbo 2.0.1214 contains an unquoted service path vulnerability that allows local attackers to potentially execute arbitrary code with elevated system privileges. Attackers can exploit the unquoted executable path to inject malicious code that will be executed when the service starts with LocalSystem permissions. |
| SpyHunter 4 contains an unquoted service path vulnerability that allows local users to potentially execute arbitrary code with elevated system privileges. Attackers can exploit the unquoted service path by placing malicious executables in specific file system locations to gain elevated access during service startup. |
| Deep Instinct Windows Agent 1.2.29.0 contains an unquoted service path vulnerability in the DeepMgmtService that allows local users to potentially execute code with elevated privileges. Attackers can exploit the unquoted path in C:\Program Files\HP Sure Sense\DeepMgmtService.exe to inject malicious code that would execute with LocalSystem permissions during service startup. |
| Avast SecureLine 5.5.522.0 contains an unquoted service path vulnerability that allows local users to potentially execute code with elevated system privileges. Attackers can exploit the unquoted path in the service configuration to inject malicious code that would execute with LocalSystem account permissions during service startup. |
| WiFi File Transfer 1.0.8 contains a persistent cross-site scripting vulnerability that allows remote attackers to inject malicious script codes through file and folder names. Attackers can exploit the web server's input validation weakness to execute arbitrary JavaScript when users preview infected file paths, potentially compromising user browser sessions. |
| QWE DL 2.0.1 mobile web application contains a persistent input validation vulnerability allowing remote attackers to inject malicious script code through path parameter manipulation. Attackers can exploit the vulnerability to execute persistent cross-site scripting attacks, potentially leading to session hijacking and application module manipulation. |
| SunFounder Pironman Dashboard (pm_dashboard) version 1.3.13 and prior contain a path traversal vulnerability in the log file API endpoints. An unauthenticated remote attacker can supply traversal sequences via the filename parameter to read and delete arbitrary files. Successful exploitation can disclose sensitive information and delete critical system files, resulting in data loss and potential system compromise or denial of service. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/gud: fix NULL fb and crtc dereferences on USB disconnect
On disconnect drm_atomic_helper_disable_all() is called which
sets both the fb and crtc for a plane to NULL before invoking a commit.
This causes a kernel oops on every display disconnect.
Add guards for those dereferences. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu/userq: Fix fence reference leak on queue teardown v2
The user mode queue keeps a pointer to the most recent fence in
userq->last_fence. This pointer holds an extra dma_fence reference.
When the queue is destroyed, we free the fence driver and its xarray,
but we forgot to drop the last_fence reference.
Because of the missing dma_fence_put(), the last fence object can stay
alive when the driver unloads. This leaves an allocated object in the
amdgpu_userq_fence slab cache and triggers
This is visible during driver unload as:
BUG amdgpu_userq_fence: Objects remaining on __kmem_cache_shutdown()
kmem_cache_destroy amdgpu_userq_fence: Slab cache still has objects
Call Trace:
kmem_cache_destroy
amdgpu_userq_fence_slab_fini
amdgpu_exit
__do_sys_delete_module
Fix this by putting userq->last_fence and clearing the pointer during
amdgpu_userq_fence_driver_free().
This makes sure the fence reference is released and the slab cache is
empty when the module exits.
v2: Update to only release userq->last_fence with dma_fence_put()
(Christian)
(cherry picked from commit 8e051e38a8d45caf6a866d4ff842105b577953bb) |
| In the Linux kernel, the following vulnerability has been resolved:
null_blk: fix kmemleak by releasing references to fault configfs items
When CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION is enabled, the null-blk
driver sets up fault injection support by creating the timeout_inject,
requeue_inject, and init_hctx_fault_inject configfs items as children
of the top-level nullbX configfs group.
However, when the nullbX device is removed, the references taken to
these fault-config configfs items are not released. As a result,
kmemleak reports a memory leak, for example:
unreferenced object 0xc00000021ff25c40 (size 32):
comm "mkdir", pid 10665, jiffies 4322121578
hex dump (first 32 bytes):
69 6e 69 74 5f 68 63 74 78 5f 66 61 75 6c 74 5f init_hctx_fault_
69 6e 6a 65 63 74 00 88 00 00 00 00 00 00 00 00 inject..........
backtrace (crc 1a018c86):
__kmalloc_node_track_caller_noprof+0x494/0xbd8
kvasprintf+0x74/0xf4
config_item_set_name+0xf0/0x104
config_group_init_type_name+0x48/0xfc
fault_config_init+0x48/0xf0
0xc0080000180559e4
configfs_mkdir+0x304/0x814
vfs_mkdir+0x49c/0x604
do_mkdirat+0x314/0x3d0
sys_mkdir+0xa0/0xd8
system_call_exception+0x1b0/0x4f0
system_call_vectored_common+0x15c/0x2ec
Fix this by explicitly releasing the references to the fault-config
configfs items when dropping the reference to the top-level nullbX
configfs group. |
| In the Linux kernel, the following vulnerability has been resolved:
idpf: fix memory leak of flow steer list on rmmod
The flow steering list maintains entries that are added and removed as
ethtool creates and deletes flow steering rules. Module removal with active
entries causes memory leak as the list is not properly cleaned up.
Prevent this by iterating through the remaining entries in the list and
freeing the associated memory during module removal. Add a spinlock
(flow_steer_list_lock) to protect the list access from multiple threads. |
| In the Linux kernel, the following vulnerability has been resolved:
idpf: fix memory leak in idpf_vport_rel()
Free vport->rx_ptype_lkup in idpf_vport_rel() to avoid leaking memory
during a reset. Reported by kmemleak:
unreferenced object 0xff450acac838a000 (size 4096):
comm "kworker/u258:5", pid 7732, jiffies 4296830044
hex dump (first 32 bytes):
00 00 00 00 00 10 00 00 00 10 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 10 00 00 00 00 00 00 ................
backtrace (crc 3da81902):
__kmalloc_cache_noprof+0x469/0x7a0
idpf_send_get_rx_ptype_msg+0x90/0x570 [idpf]
idpf_init_task+0x1ec/0x8d0 [idpf]
process_one_work+0x226/0x6d0
worker_thread+0x19e/0x340
kthread+0x10f/0x250
ret_from_fork+0x251/0x2b0
ret_from_fork_asm+0x1a/0x30 |
| In the Linux kernel, the following vulnerability has been resolved:
idpf: fix memory leak in idpf_vc_core_deinit()
Make sure to free hw->lan_regs. Reported by kmemleak during reset:
unreferenced object 0xff1b913d02a936c0 (size 96):
comm "kworker/u258:14", pid 2174, jiffies 4294958305
hex dump (first 32 bytes):
00 00 00 c0 a8 ba 2d ff 00 00 00 00 00 00 00 00 ......-.........
00 00 40 08 00 00 00 00 00 00 25 b3 a8 ba 2d ff ..@.......%...-.
backtrace (crc 36063c4f):
__kmalloc_noprof+0x48f/0x890
idpf_vc_core_init+0x6ce/0x9b0 [idpf]
idpf_vc_event_task+0x1fb/0x350 [idpf]
process_one_work+0x226/0x6d0
worker_thread+0x19e/0x340
kthread+0x10f/0x250
ret_from_fork+0x251/0x2b0
ret_from_fork_asm+0x1a/0x30 |
| In the Linux kernel, the following vulnerability has been resolved:
net: usb: pegasus: fix memory leak in update_eth_regs_async()
When asynchronously writing to the device registers and if usb_submit_urb()
fail, the code fail to release allocated to this point resources. |