| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
net: do not sense pfmemalloc status in skb_append_pagefrags()
skb_append_pagefrags() is used by af_unix and udp sendpage()
implementation so far.
In commit 326140063946 ("tcp: TX zerocopy should not sense
pfmemalloc status") we explained why we should not sense
pfmemalloc status for pages owned by user space.
We should also use skb_fill_page_desc_noacc()
in skb_append_pagefrags() to avoid following KCSAN report:
BUG: KCSAN: data-race in lru_add_fn / skb_append_pagefrags
write to 0xffffea00058fc1c8 of 8 bytes by task 17319 on cpu 0:
__list_add include/linux/list.h:73 [inline]
list_add include/linux/list.h:88 [inline]
lruvec_add_folio include/linux/mm_inline.h:323 [inline]
lru_add_fn+0x327/0x410 mm/swap.c:228
folio_batch_move_lru+0x1e1/0x2a0 mm/swap.c:246
lru_add_drain_cpu+0x73/0x250 mm/swap.c:669
lru_add_drain+0x21/0x60 mm/swap.c:773
free_pages_and_swap_cache+0x16/0x70 mm/swap_state.c:311
tlb_batch_pages_flush mm/mmu_gather.c:59 [inline]
tlb_flush_mmu_free mm/mmu_gather.c:256 [inline]
tlb_flush_mmu+0x5b2/0x640 mm/mmu_gather.c:263
tlb_finish_mmu+0x86/0x100 mm/mmu_gather.c:363
exit_mmap+0x190/0x4d0 mm/mmap.c:3098
__mmput+0x27/0x1b0 kernel/fork.c:1185
mmput+0x3d/0x50 kernel/fork.c:1207
copy_process+0x19fc/0x2100 kernel/fork.c:2518
kernel_clone+0x166/0x550 kernel/fork.c:2671
__do_sys_clone kernel/fork.c:2812 [inline]
__se_sys_clone kernel/fork.c:2796 [inline]
__x64_sys_clone+0xc3/0xf0 kernel/fork.c:2796
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x2b/0x70 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
read to 0xffffea00058fc1c8 of 8 bytes by task 17325 on cpu 1:
page_is_pfmemalloc include/linux/mm.h:1817 [inline]
__skb_fill_page_desc include/linux/skbuff.h:2432 [inline]
skb_fill_page_desc include/linux/skbuff.h:2453 [inline]
skb_append_pagefrags+0x210/0x600 net/core/skbuff.c:3974
unix_stream_sendpage+0x45e/0x990 net/unix/af_unix.c:2338
kernel_sendpage+0x184/0x300 net/socket.c:3561
sock_sendpage+0x5a/0x70 net/socket.c:1054
pipe_to_sendpage+0x128/0x160 fs/splice.c:361
splice_from_pipe_feed fs/splice.c:415 [inline]
__splice_from_pipe+0x222/0x4d0 fs/splice.c:559
splice_from_pipe fs/splice.c:594 [inline]
generic_splice_sendpage+0x89/0xc0 fs/splice.c:743
do_splice_from fs/splice.c:764 [inline]
direct_splice_actor+0x80/0xa0 fs/splice.c:931
splice_direct_to_actor+0x305/0x620 fs/splice.c:886
do_splice_direct+0xfb/0x180 fs/splice.c:974
do_sendfile+0x3bf/0x910 fs/read_write.c:1255
__do_sys_sendfile64 fs/read_write.c:1323 [inline]
__se_sys_sendfile64 fs/read_write.c:1309 [inline]
__x64_sys_sendfile64+0x10c/0x150 fs/read_write.c:1309
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x2b/0x70 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
value changed: 0x0000000000000000 -> 0xffffea00058fc188
Reported by Kernel Concurrency Sanitizer on:
CPU: 1 PID: 17325 Comm: syz-executor.0 Not tainted 6.1.0-rc1-syzkaller-00158-g440b7895c990-dirty #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/11/2022 |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: x_tables: fix percpu counter block leak on error path when creating new netns
Here is the stack where we allocate percpu counter block:
+-< __alloc_percpu
+-< xt_percpu_counter_alloc
+-< find_check_entry # {arp,ip,ip6}_tables.c
+-< translate_table
And it can be leaked on this code path:
+-> ip6t_register_table
+-> translate_table # allocates percpu counter block
+-> xt_register_table # fails
there is no freeing of the counter block on xt_register_table fail.
Note: xt_percpu_counter_free should be called to free it like we do in
do_replace through cleanup_entry helper (or in __ip6t_unregister_table).
Probability of hitting this error path is low AFAICS (xt_register_table
can only return ENOMEM here, as it is not replacing anything, as we are
creating new netns, and it is hard to imagine that all previous
allocations succeeded and after that one in xt_register_table failed).
But it's worth fixing even the rare leak. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/bnxt_re: wraparound mbox producer index
Driver is not handling the wraparound of the mbox producer index correctly.
Currently the wraparound happens once u32 max is reached.
Bit 31 of the producer index register is special and should be set
only once for the first command. Because the producer index overflow
setting bit31 after a long time, FW goes to initialization sequence
and this causes FW hang.
Fix is to wraparound the mbox producer index once it reaches u16 max. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7996: rely on mt76_connac2_mac_tx_rate_val
In order to fix a possible NULL pointer dereference in
mt7996_mac_write_txwi() of vif pointer, export
mt76_connac2_mac_tx_rate_val utility routine and reuse it
in mt7996 driver. |
| In the Linux kernel, the following vulnerability has been resolved:
af_unix: Fix data-races around user->unix_inflight.
user->unix_inflight is changed under spin_lock(unix_gc_lock),
but too_many_unix_fds() reads it locklessly.
Let's annotate the write/read accesses to user->unix_inflight.
BUG: KCSAN: data-race in unix_attach_fds / unix_inflight
write to 0xffffffff8546f2d0 of 8 bytes by task 44798 on cpu 1:
unix_inflight+0x157/0x180 net/unix/scm.c:66
unix_attach_fds+0x147/0x1e0 net/unix/scm.c:123
unix_scm_to_skb net/unix/af_unix.c:1827 [inline]
unix_dgram_sendmsg+0x46a/0x14f0 net/unix/af_unix.c:1950
unix_seqpacket_sendmsg net/unix/af_unix.c:2308 [inline]
unix_seqpacket_sendmsg+0xba/0x130 net/unix/af_unix.c:2292
sock_sendmsg_nosec net/socket.c:725 [inline]
sock_sendmsg+0x148/0x160 net/socket.c:748
____sys_sendmsg+0x4e4/0x610 net/socket.c:2494
___sys_sendmsg+0xc6/0x140 net/socket.c:2548
__sys_sendmsg+0x94/0x140 net/socket.c:2577
__do_sys_sendmsg net/socket.c:2586 [inline]
__se_sys_sendmsg net/socket.c:2584 [inline]
__x64_sys_sendmsg+0x45/0x50 net/socket.c:2584
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3b/0x90 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x6e/0xd8
read to 0xffffffff8546f2d0 of 8 bytes by task 44814 on cpu 0:
too_many_unix_fds net/unix/scm.c:101 [inline]
unix_attach_fds+0x54/0x1e0 net/unix/scm.c:110
unix_scm_to_skb net/unix/af_unix.c:1827 [inline]
unix_dgram_sendmsg+0x46a/0x14f0 net/unix/af_unix.c:1950
unix_seqpacket_sendmsg net/unix/af_unix.c:2308 [inline]
unix_seqpacket_sendmsg+0xba/0x130 net/unix/af_unix.c:2292
sock_sendmsg_nosec net/socket.c:725 [inline]
sock_sendmsg+0x148/0x160 net/socket.c:748
____sys_sendmsg+0x4e4/0x610 net/socket.c:2494
___sys_sendmsg+0xc6/0x140 net/socket.c:2548
__sys_sendmsg+0x94/0x140 net/socket.c:2577
__do_sys_sendmsg net/socket.c:2586 [inline]
__se_sys_sendmsg net/socket.c:2584 [inline]
__x64_sys_sendmsg+0x45/0x50 net/socket.c:2584
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3b/0x90 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x6e/0xd8
value changed: 0x000000000000000c -> 0x000000000000000d
Reported by Kernel Concurrency Sanitizer on:
CPU: 0 PID: 44814 Comm: systemd-coredum Not tainted 6.4.0-11989-g6843306689af #6
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: s390/diag: fix racy access of physical cpu number in diag 9c handler
We do check for target CPU == -1, but this might change at the time we
are going to use it. Hold the physical target CPU in a local variable to
avoid out-of-bound accesses to the cpu arrays. |
| In the Linux kernel, the following vulnerability has been resolved:
hwmon: (pmbus_core) Fix NULL pointer dereference
Pass i2c_client to _pmbus_is_enabled to drop the assumption
that a regulator device is passed in.
This will fix the issue of a NULL pointer dereference when called from
_pmbus_get_flags. |
| In the Linux kernel, the following vulnerability has been resolved:
ublk: fail to recover device if queue setup is interrupted
In ublk_ctrl_end_recovery(), if wait_for_completion_interruptible() is
interrupted by signal, queues aren't setup successfully yet, so we
have to fail UBLK_CMD_END_USER_RECOVERY, otherwise kernel oops can be
triggered. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: nSVM: Load L1's TSC multiplier based on L1 state, not L2 state
When emulating nested VM-Exit, load L1's TSC multiplier if L1's desired
ratio doesn't match the current ratio, not if the ratio L1 is using for
L2 diverges from the default. Functionally, the end result is the same
as KVM will run L2 with L1's multiplier if L2's multiplier is the default,
i.e. checking that L1's multiplier is loaded is equivalent to checking if
L2 has a non-default multiplier.
However, the assertion that TSC scaling is exposed to L1 is flawed, as
userspace can trigger the WARN at will by writing the MSR and then
updating guest CPUID to hide the feature (modifying guest CPUID is
allowed anytime before KVM_RUN). E.g. hacking KVM's state_test
selftest to do
vcpu_set_msr(vcpu, MSR_AMD64_TSC_RATIO, 0);
vcpu_clear_cpuid_feature(vcpu, X86_FEATURE_TSCRATEMSR);
after restoring state in a new VM+vCPU yields an endless supply of:
------------[ cut here ]------------
WARNING: CPU: 10 PID: 206939 at arch/x86/kvm/svm/nested.c:1105
nested_svm_vmexit+0x6af/0x720 [kvm_amd]
Call Trace:
nested_svm_exit_handled+0x102/0x1f0 [kvm_amd]
svm_handle_exit+0xb9/0x180 [kvm_amd]
kvm_arch_vcpu_ioctl_run+0x1eab/0x2570 [kvm]
kvm_vcpu_ioctl+0x4c9/0x5b0 [kvm]
? trace_hardirqs_off+0x4d/0xa0
__se_sys_ioctl+0x7a/0xc0
__x64_sys_ioctl+0x21/0x30
do_syscall_64+0x41/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Unlike the nested VMRUN path, hoisting the svm->tsc_scaling_enabled check
into the if-statement is wrong as KVM needs to ensure L1's multiplier is
loaded in the above scenario. Alternatively, the WARN_ON() could simply
be deleted, but that would make KVM's behavior even more subtle, e.g. it's
not immediately obvious why it's safe to write MSR_AMD64_TSC_RATIO when
checking only tsc_ratio_msr. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211_hwsim: Fix possible NULL dereference
In a call to mac80211_hwsim_select_tx_link() the sta pointer might
be NULL, thus need to check that it is not NULL before accessing it. |
| In the Linux kernel, the following vulnerability has been resolved:
md/raid5-cache: fix null-ptr-deref for r5l_flush_stripe_to_raid()
r5l_flush_stripe_to_raid() will check if the list 'flushing_ios' is
empty, and then submit 'flush_bio', however, r5l_log_flush_endio()
is clearing the list first and then clear the bio, which will cause
null-ptr-deref:
T1: submit flush io
raid5d
handle_active_stripes
r5l_flush_stripe_to_raid
// list is empty
// add 'io_end_ios' to the list
bio_init
submit_bio
// io1
T2: io1 is done
r5l_log_flush_endio
list_splice_tail_init
// clear the list
T3: submit new flush io
...
r5l_flush_stripe_to_raid
// list is empty
// add 'io_end_ios' to the list
bio_init
bio_uninit
// clear bio->bi_blkg
submit_bio
// null-ptr-deref
Fix this problem by clearing bio before clearing the list in
r5l_log_flush_endio(). |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: brcmfmac: slab-out-of-bounds read in brcmf_get_assoc_ies()
Fix a slab-out-of-bounds read that occurs in kmemdup() called from
brcmf_get_assoc_ies().
The bug could occur when assoc_info->req_len, data from a URB provided
by a USB device, is bigger than the size of buffer which is defined as
WL_EXTRA_BUF_MAX.
Add the size check for req_len/resp_len of assoc_info.
Found by a modified version of syzkaller.
[ 46.592467][ T7] ==================================================================
[ 46.594687][ T7] BUG: KASAN: slab-out-of-bounds in kmemdup+0x3e/0x50
[ 46.596572][ T7] Read of size 3014656 at addr ffff888019442000 by task kworker/0:1/7
[ 46.598575][ T7]
[ 46.599157][ T7] CPU: 0 PID: 7 Comm: kworker/0:1 Tainted: G O 5.14.0+ #145
[ 46.601333][ T7] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58e9a3f-prebuilt.qemu.org 04/01/2014
[ 46.604360][ T7] Workqueue: events brcmf_fweh_event_worker
[ 46.605943][ T7] Call Trace:
[ 46.606584][ T7] dump_stack_lvl+0x8e/0xd1
[ 46.607446][ T7] print_address_description.constprop.0.cold+0x93/0x334
[ 46.608610][ T7] ? kmemdup+0x3e/0x50
[ 46.609341][ T7] kasan_report.cold+0x79/0xd5
[ 46.610151][ T7] ? kmemdup+0x3e/0x50
[ 46.610796][ T7] kasan_check_range+0x14e/0x1b0
[ 46.611691][ T7] memcpy+0x20/0x60
[ 46.612323][ T7] kmemdup+0x3e/0x50
[ 46.612987][ T7] brcmf_get_assoc_ies+0x967/0xf60
[ 46.613904][ T7] ? brcmf_notify_vif_event+0x3d0/0x3d0
[ 46.614831][ T7] ? lock_chain_count+0x20/0x20
[ 46.615683][ T7] ? mark_lock.part.0+0xfc/0x2770
[ 46.616552][ T7] ? lock_chain_count+0x20/0x20
[ 46.617409][ T7] ? mark_lock.part.0+0xfc/0x2770
[ 46.618244][ T7] ? lock_chain_count+0x20/0x20
[ 46.619024][ T7] brcmf_bss_connect_done.constprop.0+0x241/0x2e0
[ 46.620019][ T7] ? brcmf_parse_configure_security.isra.0+0x2a0/0x2a0
[ 46.620818][ T7] ? __lock_acquire+0x181f/0x5790
[ 46.621462][ T7] brcmf_notify_connect_status+0x448/0x1950
[ 46.622134][ T7] ? rcu_read_lock_bh_held+0xb0/0xb0
[ 46.622736][ T7] ? brcmf_cfg80211_join_ibss+0x7b0/0x7b0
[ 46.623390][ T7] ? find_held_lock+0x2d/0x110
[ 46.623962][ T7] ? brcmf_fweh_event_worker+0x19f/0xc60
[ 46.624603][ T7] ? mark_held_locks+0x9f/0xe0
[ 46.625145][ T7] ? lockdep_hardirqs_on_prepare+0x3e0/0x3e0
[ 46.625871][ T7] ? brcmf_cfg80211_join_ibss+0x7b0/0x7b0
[ 46.626545][ T7] brcmf_fweh_call_event_handler.isra.0+0x90/0x100
[ 46.627338][ T7] brcmf_fweh_event_worker+0x557/0xc60
[ 46.627962][ T7] ? brcmf_fweh_call_event_handler.isra.0+0x100/0x100
[ 46.628736][ T7] ? rcu_read_lock_sched_held+0xa1/0xd0
[ 46.629396][ T7] ? rcu_read_lock_bh_held+0xb0/0xb0
[ 46.629970][ T7] ? lockdep_hardirqs_on_prepare+0x273/0x3e0
[ 46.630649][ T7] process_one_work+0x92b/0x1460
[ 46.631205][ T7] ? pwq_dec_nr_in_flight+0x330/0x330
[ 46.631821][ T7] ? rwlock_bug.part.0+0x90/0x90
[ 46.632347][ T7] worker_thread+0x95/0xe00
[ 46.632832][ T7] ? __kthread_parkme+0x115/0x1e0
[ 46.633393][ T7] ? process_one_work+0x1460/0x1460
[ 46.633957][ T7] kthread+0x3a1/0x480
[ 46.634369][ T7] ? set_kthread_struct+0x120/0x120
[ 46.634933][ T7] ret_from_fork+0x1f/0x30
[ 46.635431][ T7]
[ 46.635687][ T7] Allocated by task 7:
[ 46.636151][ T7] kasan_save_stack+0x1b/0x40
[ 46.636628][ T7] __kasan_kmalloc+0x7c/0x90
[ 46.637108][ T7] kmem_cache_alloc_trace+0x19e/0x330
[ 46.637696][ T7] brcmf_cfg80211_attach+0x4a0/0x4040
[ 46.638275][ T7] brcmf_attach+0x389/0xd40
[ 46.638739][ T7] brcmf_usb_probe+0x12de/0x1690
[ 46.639279][ T7] usb_probe_interface+0x2aa/0x760
[ 46.639820][ T7] really_probe+0x205/0xb70
[ 46.640342][ T7] __driver_probe_device+0
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
jfs: jfs_dmap: Validate db_l2nbperpage while mounting
In jfs_dmap.c at line 381, BLKTODMAP is used to get a logical block
number inside dbFree(). db_l2nbperpage, which is the log2 number of
blocks per page, is passed as an argument to BLKTODMAP which uses it
for shifting.
Syzbot reported a shift out-of-bounds crash because db_l2nbperpage is
too big. This happens because the large value is set without any
validation in dbMount() at line 181.
Thus, make sure that db_l2nbperpage is correct while mounting.
Max number of blocks per page = Page size / Min block size
=> log2(Max num_block per page) = log2(Page size / Min block size)
= log2(Page size) - log2(Min block size)
=> Max db_l2nbperpage = L2PSIZE - L2MINBLOCKSIZE |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: Fix function prototype mismatch for ext4_feat_ktype
With clang's kernel control flow integrity (kCFI, CONFIG_CFI_CLANG),
indirect call targets are validated against the expected function
pointer prototype to make sure the call target is valid to help mitigate
ROP attacks. If they are not identical, there is a failure at run time,
which manifests as either a kernel panic or thread getting killed.
ext4_feat_ktype was setting the "release" handler to "kfree", which
doesn't have a matching function prototype. Add a simple wrapper
with the correct prototype.
This was found as a result of Clang's new -Wcast-function-type-strict
flag, which is more sensitive than the simpler -Wcast-function-type,
which only checks for type width mismatches.
Note that this code is only reached when ext4 is a loadable module and
it is being unloaded:
CFI failure at kobject_put+0xbb/0x1b0 (target: kfree+0x0/0x180; expected type: 0x7c4aa698)
...
RIP: 0010:kobject_put+0xbb/0x1b0
...
Call Trace:
<TASK>
ext4_exit_sysfs+0x14/0x60 [ext4]
cleanup_module+0x67/0xedb [ext4] |
| In the Linux kernel, the following vulnerability has been resolved:
spi: imx: Don't skip cleanup in remove's error path
Returning early in a platform driver's remove callback is wrong. In this
case the dma resources are not released in the error path. this is never
retried later and so this is a permanent leak. To fix this, only skip
hardware disabling if waking the device fails. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mwifiex: Fix OOB and integer underflow when rx packets
Make sure mwifiex_process_mgmt_packet,
mwifiex_process_sta_rx_packet and mwifiex_process_uap_rx_packet,
mwifiex_uap_queue_bridged_pkt and mwifiex_process_rx_packet
not out-of-bounds access the skb->data buffer. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: drop redundant sched job cleanup when cs is aborted
Once command submission failed due to userptr invalidation in
amdgpu_cs_submit, legacy code will perform cleanup of scheduler
job. However, it's not needed at all, as former commit has integrated
job cleanup stuff into amdgpu_job_free. Otherwise, because of double
free, a NULL pointer dereference will occur in such scenario.
Bug: https://gitlab.freedesktop.org/drm/amd/-/issues/2457 |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: fix invalid drv_sta_pre_rcu_remove calls for non-uploaded sta
Avoid potential data corruption issues caused by uninitialized driver
private data structures. |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix warning in cifs_smb3_do_mount()
This fixes the following warning reported by kernel test robot
fs/smb/client/cifsfs.c:982 cifs_smb3_do_mount() warn: possible
memory leak of 'cifs_sb' |
| In the Linux kernel, the following vulnerability has been resolved:
erofs: Fix detection of atomic context
Current check for atomic context is not sufficient as
z_erofs_decompressqueue_endio can be called under rcu lock
from blk_mq_flush_plug_list(). See the stacktrace [1]
In such case we should hand off the decompression work for async
processing rather than trying to do sync decompression in current
context. Patch fixes the detection by checking for
rcu_read_lock_any_held() and while at it use more appropriate
!in_task() check than in_atomic().
Background: Historically erofs would always schedule a kworker for
decompression which would incur the scheduling cost regardless of
the context. But z_erofs_decompressqueue_endio() may not always
be in atomic context and we could actually benefit from doing the
decompression in z_erofs_decompressqueue_endio() if we are in
thread context, for example when running with dm-verity.
This optimization was later added in patch [2] which has shown
improvement in performance benchmarks.
==============================================
[1] Problem stacktrace
[name:core&]BUG: sleeping function called from invalid context at kernel/locking/mutex.c:291
[name:core&]in_atomic(): 0, irqs_disabled(): 0, non_block: 0, pid: 1615, name: CpuMonitorServi
[name:core&]preempt_count: 0, expected: 0
[name:core&]RCU nest depth: 1, expected: 0
CPU: 7 PID: 1615 Comm: CpuMonitorServi Tainted: G S W OE 6.1.25-android14-5-maybe-dirty-mainline #1
Hardware name: MT6897 (DT)
Call trace:
dump_backtrace+0x108/0x15c
show_stack+0x20/0x30
dump_stack_lvl+0x6c/0x8c
dump_stack+0x20/0x48
__might_resched+0x1fc/0x308
__might_sleep+0x50/0x88
mutex_lock+0x2c/0x110
z_erofs_decompress_queue+0x11c/0xc10
z_erofs_decompress_kickoff+0x110/0x1a4
z_erofs_decompressqueue_endio+0x154/0x180
bio_endio+0x1b0/0x1d8
__dm_io_complete+0x22c/0x280
clone_endio+0xe4/0x280
bio_endio+0x1b0/0x1d8
blk_update_request+0x138/0x3a4
blk_mq_plug_issue_direct+0xd4/0x19c
blk_mq_flush_plug_list+0x2b0/0x354
__blk_flush_plug+0x110/0x160
blk_finish_plug+0x30/0x4c
read_pages+0x2fc/0x370
page_cache_ra_unbounded+0xa4/0x23c
page_cache_ra_order+0x290/0x320
do_sync_mmap_readahead+0x108/0x2c0
filemap_fault+0x19c/0x52c
__do_fault+0xc4/0x114
handle_mm_fault+0x5b4/0x1168
do_page_fault+0x338/0x4b4
do_translation_fault+0x40/0x60
do_mem_abort+0x60/0xc8
el0_da+0x4c/0xe0
el0t_64_sync_handler+0xd4/0xfc
el0t_64_sync+0x1a0/0x1a4
[2] Link: https://lore.kernel.org/all/20210317035448.13921-1-huangjianan@oppo.com/ |