| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Dokploy is a free, self-hostable Platform as a Service (PaaS). In versions prior to 0.26.6, a critical command injection vulnerability exists in Dokploy's WebSocket endpoint `/docker-container-terminal`. The `containerId` and `activeWay` parameters are directly interpolated into shell commands without sanitization, allowing authenticated attackers to execute arbitrary commands on the host server. Version 0.26.6 fixes the issue. |
| An issue was discovered in 6.0 before 6.0.2, 5.2 before 5.2.11, and 4.2 before 4.2.28.
`FilteredRelation` is subject to SQL injection in column aliases via control characters, using a suitably crafted dictionary, with dictionary expansion, as the `**kwargs` passed to `QuerySet` methods `annotate()`, `aggregate()`, `extra()`, `values()`, `values_list()`, and `alias()`.
Earlier, unsupported Django series (such as 5.0.x, 4.1.x, and 3.2.x) were not evaluated and may also be affected.
Django would like to thank Solomon Kebede for reporting this issue. |
| An issue was discovered in 6.0 before 6.0.2, 5.2 before 5.2.11, and 4.2 before 4.2.28.
`.QuerySet.order_by()` is subject to SQL injection in column aliases containing periods when the same alias is, using a suitably crafted dictionary, with dictionary expansion, used in `FilteredRelation`.
Earlier, unsupported Django series (such as 5.0.x, 4.1.x, and 3.2.x) were not evaluated and may also be affected.
Django would like to thank Solomon Kebede for reporting this issue. |
| An issue was discovered in 6.0 before 6.0.2, 5.2 before 5.2.11, and 4.2 before 4.2.28.
Raster lookups on ``RasterField`` (only implemented on PostGIS) allows remote attackers to inject SQL via the band index parameter.
Earlier, unsupported Django series (such as 5.0.x, 4.1.x, and 3.2.x) were not evaluated and may also be affected.
Django would like to thank Tarek Nakkouch for reporting this issue. |
| IBM Db2 for Linux, UNIX and Windows (includes Db2 Connect Server) could allow a user to cause a denial of service due to insufficient validation of special elements in data query logic. |
| n8n is an open source workflow automation platform. Prior to version 2.4.8, a vulnerability in the Python Code node allows authenticated users to break out of the Python sandbox environment and execute code outside the intended security boundary. This issue has been patched in version 2.4.8. |
| n8n is an open source workflow automation platform. Prior to versions 1.118.0 and 2.4.0, a vulnerability in the Merge node's SQL Query mode allowed authenticated users with permission to create or modify workflows to write arbitrary files to the n8n server's filesystem potentially leading to remote code execution. This issue has been patched in versions 1.118.0 and 2.4.0. |
| n8n is an open source workflow automation platform. Prior to versions 1.123.12 and 2.4.0, when workflows process uploaded files and transfer them to remote servers via the SSH node without validating their metadata the vulnerability can lead to files being written to unintended locations on those remote systems potentially leading to remote code execution on those systems. As a prerequisites an unauthenticated attacker needs knowledge of such workflows existing and the endpoints for file uploads need to be unauthenticated. This issue has been patched in versions 1.123.12 and 2.4.0. |
| n8n is an open source workflow automation platform. Prior to versions 1.123.9 and 2.2.1, a Cross-Site Scripting (XSS) vulnerability existed in a markdown rendering component used in n8n's interface, including workflow sticky notes and other areas that support markdown content. An authenticated user with permission to create or modify workflows could abuse this to execute scripts with same-origin privileges when other users interact with a maliciously crafted workflow. This could lead to session hijacking and account takeover. This issue has been patched in versions 1.123.9 and 2.2.1. |
| n8n is an open source workflow automation platform. Prior to versions 1.123.10 and 2.5.0, vulnerabilities in the Git node allowed authenticated users with permission to create or modify workflows to execute arbitrary system commands or read arbitrary files on the n8n host. This issue has been patched in versions 1.123.10 and 2.5.0. |
| n8n is an open source workflow automation platform. Prior to versions 1.123.18 and 2.5.0, a vulnerability in the file access controls allows authenticated users with permission to create or modify workflows to read sensitive files from the n8n host system. This can be exploited to obtain critical configuration data and user credentials, leading to complete account takeover of any user on the instance. This issue has been patched in versions 1.123.18 and 2.5.0. |
| n8n is an open source workflow automation platform. Prior to version 1.123.2, a Cross-Site Scripting (XSS) vulnerability has been identified in the handling of webhook responses and related HTTP endpoints. Under certain conditions, the Content Security Policy (CSP) sandbox protection intended to isolate HTML responses may not be applied correctly. An authenticated user with permission to create or modify workflows could abuse this to execute malicious scripts with same-origin privileges when other users interact with the crafted workflow. This could lead to session hijacking and account takeover. This issue has been patched in version 1.123.2. |
| n8n is an open source workflow automation platform. Prior to versions 1.123.17 and 2.5.2, an authenticated user with permission to create or modify workflows could abuse crafted expressions in workflow parameters to trigger unintended system command execution on the host running n8n. This issue has been patched in versions 1.123.17 and 2.5.2. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: core: Wake up the error handler when final completions race against each other
The fragile ordering between marking commands completed or failed so
that the error handler only wakes when the last running command
completes or times out has race conditions. These race conditions can
cause the SCSI layer to fail to wake the error handler, leaving I/O
through the SCSI host stuck as the error state cannot advance.
First, there is an memory ordering issue within scsi_dec_host_busy().
The write which clears SCMD_STATE_INFLIGHT may be reordered with reads
counting in scsi_host_busy(). While the local CPU will see its own
write, reordering can allow other CPUs in scsi_dec_host_busy() or
scsi_eh_inc_host_failed() to see a raised busy count, causing no CPU to
see a host busy equal to the host_failed count.
This race condition can be prevented with a memory barrier on the error
path to force the write to be visible before counting host busy
commands.
Second, there is a general ordering issue with scsi_eh_inc_host_failed(). By
counting busy commands before incrementing host_failed, it can race with a
final command in scsi_dec_host_busy(), such that scsi_dec_host_busy() does
not see host_failed incremented but scsi_eh_inc_host_failed() counts busy
commands before SCMD_STATE_INFLIGHT is cleared by scsi_dec_host_busy(),
resulting in neither waking the error handler task.
This needs the call to scsi_host_busy() to be moved after host_failed is
incremented to close the race condition. |
| In the Linux kernel, the following vulnerability has been resolved:
fs/writeback: skip AS_NO_DATA_INTEGRITY mappings in wait_sb_inodes()
Above the while() loop in wait_sb_inodes(), we document that we must wait
for all pages under writeback for data integrity. Consequently, if a
mapping, like fuse, traditionally does not have data integrity semantics,
there is no need to wait at all; we can simply skip these inodes.
This restores fuse back to prior behavior where syncs are no-ops. This
fixes a user regression where if a system is running a faulty fuse server
that does not reply to issued write requests, this causes wait_sb_inodes()
to wait forever. |
| In the Linux kernel, the following vulnerability has been resolved:
can: usb_8dev: usb_8dev_read_bulk_callback(): fix URB memory leak
Fix similar memory leak as in commit 7352e1d5932a ("can: gs_usb:
gs_usb_receive_bulk_callback(): fix URB memory leak").
In usb_8dev_open() -> usb_8dev_start(), the URBs for USB-in transfers are
allocated, added to the priv->rx_submitted anchor and submitted. In the
complete callback usb_8dev_read_bulk_callback(), the URBs are processed and
resubmitted. In usb_8dev_close() -> unlink_all_urbs() the URBs are freed by
calling usb_kill_anchored_urbs(&priv->rx_submitted).
However, this does not take into account that the USB framework unanchors
the URB before the complete function is called. This means that once an
in-URB has been completed, it is no longer anchored and is ultimately not
released in usb_kill_anchored_urbs().
Fix the memory leak by anchoring the URB in the
usb_8dev_read_bulk_callback() to the priv->rx_submitted anchor. |
| In the Linux kernel, the following vulnerability has been resolved:
arm64/fpsimd: signal: Allocate SSVE storage when restoring ZA
The code to restore a ZA context doesn't attempt to allocate the task's
sve_state before setting TIF_SME. Consequently, restoring a ZA context
can place a task into an invalid state where TIF_SME is set but the
task's sve_state is NULL.
In legitimate but uncommon cases where the ZA signal context was NOT
created by the kernel in the context of the same task (e.g. if the task
is saved/restored with something like CRIU), we have no guarantee that
sve_state had been allocated previously. In these cases, userspace can
enter streaming mode without trapping while sve_state is NULL, causing a
later NULL pointer dereference when the kernel attempts to store the
register state:
| # ./sigreturn-za
| Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000
| Mem abort info:
| ESR = 0x0000000096000046
| EC = 0x25: DABT (current EL), IL = 32 bits
| SET = 0, FnV = 0
| EA = 0, S1PTW = 0
| FSC = 0x06: level 2 translation fault
| Data abort info:
| ISV = 0, ISS = 0x00000046, ISS2 = 0x00000000
| CM = 0, WnR = 1, TnD = 0, TagAccess = 0
| GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
| user pgtable: 4k pages, 52-bit VAs, pgdp=0000000101f47c00
| [0000000000000000] pgd=08000001021d8403, p4d=0800000102274403, pud=0800000102275403, pmd=0000000000000000
| Internal error: Oops: 0000000096000046 [#1] SMP
| Modules linked in:
| CPU: 0 UID: 0 PID: 153 Comm: sigreturn-za Not tainted 6.19.0-rc1 #1 PREEMPT
| Hardware name: linux,dummy-virt (DT)
| pstate: 214000c9 (nzCv daIF +PAN -UAO -TCO +DIT -SSBS BTYPE=--)
| pc : sve_save_state+0x4/0xf0
| lr : fpsimd_save_user_state+0xb0/0x1c0
| sp : ffff80008070bcc0
| x29: ffff80008070bcc0 x28: fff00000c1ca4c40 x27: 63cfa172fb5cf658
| x26: fff00000c1ca5228 x25: 0000000000000000 x24: 0000000000000000
| x23: 0000000000000000 x22: fff00000c1ca4c40 x21: fff00000c1ca4c40
| x20: 0000000000000020 x19: fff00000ff6900f0 x18: 0000000000000000
| x17: fff05e8e0311f000 x16: 0000000000000000 x15: 028fca8f3bdaf21c
| x14: 0000000000000212 x13: fff00000c0209f10 x12: 0000000000000020
| x11: 0000000000200b20 x10: 0000000000000000 x9 : fff00000ff69dcc0
| x8 : 00000000000003f2 x7 : 0000000000000001 x6 : fff00000c1ca5b48
| x5 : fff05e8e0311f000 x4 : 0000000008000000 x3 : 0000000000000000
| x2 : 0000000000000001 x1 : fff00000c1ca5970 x0 : 0000000000000440
| Call trace:
| sve_save_state+0x4/0xf0 (P)
| fpsimd_thread_switch+0x48/0x198
| __switch_to+0x20/0x1c0
| __schedule+0x36c/0xce0
| schedule+0x34/0x11c
| exit_to_user_mode_loop+0x124/0x188
| el0_interrupt+0xc8/0xd8
| __el0_irq_handler_common+0x18/0x24
| el0t_64_irq_handler+0x10/0x1c
| el0t_64_irq+0x198/0x19c
| Code: 54000040 d51b4408 d65f03c0 d503245f (e5bb5800)
| ---[ end trace 0000000000000000 ]---
Fix this by having restore_za_context() ensure that the task's sve_state
is allocated, matching what we do when taking an SME trap. Any live
SVE/SSVE state (which is restored earlier from a separate signal
context) must be preserved, and hence this is not zeroed. |
| In the Linux kernel, the following vulnerability has been resolved:
timekeeping: Adjust the leap state for the correct auxiliary timekeeper
When __do_ajdtimex() was introduced to handle adjtimex for any
timekeeper, this reference to tk_core was not updated. When called on an
auxiliary timekeeper, the core timekeeper would be updated incorrectly.
This gets caught by the lock debugging diagnostics because the
timekeepers sequence lock gets written to without holding its
associated spinlock:
WARNING: include/linux/seqlock.h:226 at __do_adjtimex+0x394/0x3b0, CPU#2: test/125
aux_clock_adj (kernel/time/timekeeping.c:2979)
__do_sys_clock_adjtime (kernel/time/posix-timers.c:1161 kernel/time/posix-timers.c:1173)
do_syscall_64 (arch/x86/entry/syscall_64.c:63 (discriminator 1) arch/x86/entry/syscall_64.c:94 (discriminator 1))
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:131)
Update the correct auxiliary timekeeper. |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: qfq: Use cl_is_active to determine whether class is active in qfq_rm_from_ag
This is more of a preventive patch to make the code more consistent and
to prevent possible exploits that employ child qlen manipulations on qfq.
use cl_is_active instead of relying on the child qdisc's qlen to determine
class activation. |
| In the Linux kernel, the following vulnerability has been resolved:
ice: fix devlink reload call trace
Commit 4da71a77fc3b ("ice: read internal temperature sensor") introduced
internal temperature sensor reading via HWMON. ice_hwmon_init() was added
to ice_init_feature() and ice_hwmon_exit() was added to ice_remove(). As a
result if devlink reload is used to reinit the device and then the driver
is removed, a call trace can occur.
BUG: unable to handle page fault for address: ffffffffc0fd4b5d
Call Trace:
string+0x48/0xe0
vsnprintf+0x1f9/0x650
sprintf+0x62/0x80
name_show+0x1f/0x30
dev_attr_show+0x19/0x60
The call trace repeats approximately every 10 minutes when system
monitoring tools (e.g., sadc) attempt to read the orphaned hwmon sysfs
attributes that reference freed module memory.
The sequence is:
1. Driver load, ice_hwmon_init() gets called from ice_init_feature()
2. Devlink reload down, flow does not call ice_remove()
3. Devlink reload up, ice_hwmon_init() gets called from
ice_init_feature() resulting in a second instance
4. Driver unload, ice_hwmon_exit() called from ice_remove() leaving the
first hwmon instance orphaned with dangling pointer
Fix this by moving ice_hwmon_exit() from ice_remove() to
ice_deinit_features() to ensure proper cleanup symmetry with
ice_hwmon_init(). |