| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Inefficient algorithm complexity in mjson in HAProxy allows remote attackers to cause a denial of service via specially crafted JSON requests. |
| In the Linux kernel, the following vulnerability has been resolved:
arm64/ptrace: Fix stack-out-of-bounds read in regs_get_kernel_stack_nth()
KASAN reports a stack-out-of-bounds read in regs_get_kernel_stack_nth().
Call Trace:
[ 97.283505] BUG: KASAN: stack-out-of-bounds in regs_get_kernel_stack_nth+0xa8/0xc8
[ 97.284677] Read of size 8 at addr ffff800089277c10 by task 1.sh/2550
[ 97.285732]
[ 97.286067] CPU: 7 PID: 2550 Comm: 1.sh Not tainted 6.6.0+ #11
[ 97.287032] Hardware name: linux,dummy-virt (DT)
[ 97.287815] Call trace:
[ 97.288279] dump_backtrace+0xa0/0x128
[ 97.288946] show_stack+0x20/0x38
[ 97.289551] dump_stack_lvl+0x78/0xc8
[ 97.290203] print_address_description.constprop.0+0x84/0x3c8
[ 97.291159] print_report+0xb0/0x280
[ 97.291792] kasan_report+0x84/0xd0
[ 97.292421] __asan_load8+0x9c/0xc0
[ 97.293042] regs_get_kernel_stack_nth+0xa8/0xc8
[ 97.293835] process_fetch_insn+0x770/0xa30
[ 97.294562] kprobe_trace_func+0x254/0x3b0
[ 97.295271] kprobe_dispatcher+0x98/0xe0
[ 97.295955] kprobe_breakpoint_handler+0x1b0/0x210
[ 97.296774] call_break_hook+0xc4/0x100
[ 97.297451] brk_handler+0x24/0x78
[ 97.298073] do_debug_exception+0xac/0x178
[ 97.298785] el1_dbg+0x70/0x90
[ 97.299344] el1h_64_sync_handler+0xcc/0xe8
[ 97.300066] el1h_64_sync+0x78/0x80
[ 97.300699] kernel_clone+0x0/0x500
[ 97.301331] __arm64_sys_clone+0x70/0x90
[ 97.302084] invoke_syscall+0x68/0x198
[ 97.302746] el0_svc_common.constprop.0+0x11c/0x150
[ 97.303569] do_el0_svc+0x38/0x50
[ 97.304164] el0_svc+0x44/0x1d8
[ 97.304749] el0t_64_sync_handler+0x100/0x130
[ 97.305500] el0t_64_sync+0x188/0x190
[ 97.306151]
[ 97.306475] The buggy address belongs to stack of task 1.sh/2550
[ 97.307461] and is located at offset 0 in frame:
[ 97.308257] __se_sys_clone+0x0/0x138
[ 97.308910]
[ 97.309241] This frame has 1 object:
[ 97.309873] [48, 184) 'args'
[ 97.309876]
[ 97.310749] The buggy address belongs to the virtual mapping at
[ 97.310749] [ffff800089270000, ffff800089279000) created by:
[ 97.310749] dup_task_struct+0xc0/0x2e8
[ 97.313347]
[ 97.313674] The buggy address belongs to the physical page:
[ 97.314604] page: refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x14f69a
[ 97.315885] flags: 0x15ffffe00000000(node=1|zone=2|lastcpupid=0xfffff)
[ 97.316957] raw: 015ffffe00000000 0000000000000000 dead000000000122 0000000000000000
[ 97.318207] raw: 0000000000000000 0000000000000000 00000001ffffffff 0000000000000000
[ 97.319445] page dumped because: kasan: bad access detected
[ 97.320371]
[ 97.320694] Memory state around the buggy address:
[ 97.321511] ffff800089277b00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[ 97.322681] ffff800089277b80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[ 97.323846] >ffff800089277c00: 00 00 f1 f1 f1 f1 f1 f1 00 00 00 00 00 00 00 00
[ 97.325023] ^
[ 97.325683] ffff800089277c80: 00 00 00 00 00 00 00 00 00 f3 f3 f3 f3 f3 f3 f3
[ 97.326856] ffff800089277d00: f3 f3 00 00 00 00 00 00 00 00 00 00 00 00 00 00
This issue seems to be related to the behavior of some gcc compilers and
was also fixed on the s390 architecture before:
commit d93a855c31b7 ("s390/ptrace: Avoid KASAN false positives in regs_get_kernel_stack_nth()")
As described in that commit, regs_get_kernel_stack_nth() has confirmed that
`addr` is on the stack, so reading the value at `*addr` should be allowed.
Use READ_ONCE_NOCHECK() helper to silence the KASAN check for this case.
[will: Use '*addr' as the argument to READ_ONCE_NOCHECK()] |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/pp: Fix potential NULL pointer dereference in atomctrl_initialize_mc_reg_table
The function atomctrl_initialize_mc_reg_table() and
atomctrl_initialize_mc_reg_table_v2_2() does not check the return
value of smu_atom_get_data_table(). If smu_atom_get_data_table()
fails to retrieve vram_info, it returns NULL which is later
dereferenced. |
| In the Linux kernel, the following vulnerability has been resolved:
bus: fsl-mc: fix double-free on mc_dev
The blamed commit tried to simplify how the deallocations are done but,
in the process, introduced a double-free on the mc_dev variable.
In case the MC device is a DPRC, a new mc_bus is allocated and the
mc_dev variable is just a reference to one of its fields. In this
circumstance, on the error path only the mc_bus should be freed.
This commit introduces back the following checkpatch warning which is a
false-positive.
WARNING: kfree(NULL) is safe and this check is probably not required
+ if (mc_bus)
+ kfree(mc_bus); |
| An Out-of-bounds Write vulnerability in WatchGuard Fireware OS may allow a remote unauthenticated attacker to execute arbitrary code. This vulnerability affects both the Mobile User VPN with IKEv2 and the Branch Office VPN using IKEv2 when configured with a dynamic gateway peer.This vulnerability affects Fireware OS 11.10.2 up to and including 11.12.4_Update1, 12.0 up to and including 12.11.5 and 2025.1 up to and including 2025.1.3. |
| nopCommerce 4.90.0 is vulnerable to Cross Site Scripting (XSS) via the Attributes functionality. |
| nopCommerce 4.90.0 is vulnerable to Cross Site Scripting (XSS) via the Blog posts functionality in the Content Management area. |
| nopCommerce 4.90.0 is vulnerable to Cross Site Scripting (XSS) via the Currencies functionality. |
| nopCommerce 4.90.0 is vulnerable to Cross Site Scripting (XSS) in the product management functionality. Malicious payloads inserted into the "Product Name" and "Short Description" fields are stored in the backend database and executed automatically whenever a user views the affected pages. |
| ArcSearch for iOS versions prior to 1.45.2 could display a different domain in the address bar than the content being shown after an iframe-triggered URI-scheme navigation, increasing spoofing risk. |
| nopCommerce 4.90.0 is vulnerable to Cross Site Request Forgery (CSRF) via the Schedule Tasks functionality. |
| Dive is an open-source MCP Host Desktop Application that enables integration with function-calling LLMs. A critical Stored Cross-Site Scripting (XSS) vulnerability exists in versions prior to 0.11.1 in the Mermaid diagram rendering component. The application allows the execution of arbitrary JavaScript via `javascript:`. An attacker can exploit this to inject a malicious Model Context Protocol (MCP) server configuration, leading to Remote Code Execution (RCE) on the victim's machine when the node is clicked. Version 0.11.1 fixes the issue. |
| pluginsGLPI's Database Inventory Plugin "manages" the Teclib' inventory agents in order to perform an inventory of the databases present on the workstation. Prior to version 1.1.2, in certain conditions (database write access must first be obtained through another vulnerability or misconfiguration), user-controlled data is stored insecurely in the database via computergroup, and is later unserialized on every page load, allowing arbitrary PHP object instantiation. Version 1.1.2 fixes the issue. |
| Gotham Gaia application was found to be exposing multiple unauthenticated endpoints. |
| A use-after-free vulnerability has been identified in the GNU GRUB (Grand Unified Bootloader). The flaw occurs because the file-closing process incorrectly retains a memory pointer, leaving an invalid reference to a file system structure. An attacker could exploit this vulnerability to cause grub to crash, leading to a Denial of Service. Possible data integrity or confidentiality compromise is not discarded. |
| A vulnerability has been identified in the GRUB (Grand Unified Bootloader) component. This flaw occurs because the bootloader mishandles string conversion when reading information from a USB device, allowing an attacker to exploit inconsistent length values. A local attacker can connect a maliciously configured USB device during the boot sequence to trigger this issue. A successful exploitation may lead GRUB to crash, leading to a Denial of Service. Data corruption may be also possible, although given the complexity of the exploit the impact is most likely limited. |
| A vulnerability in the GRUB2 bootloader has been identified in the normal module. This flaw, a memory Use After Free issue, occurs because the normal_exit command is not properly unregistered when its related module is unloaded. An attacker can exploit this condition by invoking the command after the module has been removed, causing the system to improperly access a previously freed memory location. This leads to a system crash or possible impacts in data confidentiality and integrity. |
| A vulnerability has been identified in the GRUB2 bootloader's normal command that poses an immediate Denial of Service (DoS) risk. This flaw is a Use-after-Free issue, caused because the normal command is not properly unregistered when the module is unloaded. An attacker who can execute this command can force the system to access memory locations that are no longer valid. Successful exploitation leads directly to system instability, which can result in a complete crash and halt system availability. Impact on the data integrity and confidentiality is also not discarded. |
| A Use-After-Free vulnerability has been discovered in GRUB's gettext module. This flaw stems from a programming error where the gettext command remains registered in memory after its module is unloaded. An attacker can exploit this condition by invoking the orphaned command, causing the application to access a memory location that is no longer valid. An attacker could exploit this vulnerability to cause grub to crash, leading to a Denial of Service. Possible data integrity or confidentiality compromise is not discarded. |
| A vulnerability has been identified in the GRUB2 bootloader's network module that poses an immediate Denial of Service (DoS) risk. This flaw is a Use-after-Free issue, caused because the net_set_vlan command is not properly unregistered when the network module is unloaded from memory. An attacker who can execute this command can force the system to access memory locations that are no longer valid. Successful exploitation leads directly to system instability, which can result in a complete crash and halt system availability |