CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
f2fs: remove clear SB_INLINECRYPT flag in default_options
In f2fs_remount, SB_INLINECRYPT flag will be clear and re-set.
If create new file or open file during this gap, these files
will not use inlinecrypt. Worse case, it may lead to data
corruption if wrappedkey_v0 is enable.
Thread A: Thread B:
-f2fs_remount -f2fs_file_open or f2fs_new_inode
-default_options
<- clear SB_INLINECRYPT flag
-fscrypt_select_encryption_impl
-parse_options
<- set SB_INLINECRYPT again |
In the Linux kernel, the following vulnerability has been resolved:
platform/x86: x86-android-tablets: Unregister devices in reverse order
Not all subsystems support a device getting removed while there are
still consumers of the device with a reference to the device.
One example of this is the regulator subsystem. If a regulator gets
unregistered while there are still drivers holding a reference
a WARN() at drivers/regulator/core.c:5829 triggers, e.g.:
WARNING: CPU: 1 PID: 1587 at drivers/regulator/core.c:5829 regulator_unregister
Hardware name: Intel Corp. VALLEYVIEW C0 PLATFORM/BYT-T FFD8, BIOS BLADE_21.X64.0005.R00.1504101516 FFD8_X64_R_2015_04_10_1516 04/10/2015
RIP: 0010:regulator_unregister
Call Trace:
<TASK>
regulator_unregister
devres_release_group
i2c_device_remove
device_release_driver_internal
bus_remove_device
device_del
device_unregister
x86_android_tablet_remove
On the Lenovo Yoga Tablet 2 series the bq24190 charger chip also provides
a 5V boost converter output for powering USB devices connected to the micro
USB port, the bq24190-charger driver exports this as a Vbus regulator.
On the 830 (8") and 1050 ("10") models this regulator is controlled by
a platform_device and x86_android_tablet_remove() removes platform_device-s
before i2c_clients so the consumer gets removed first.
But on the 1380 (13") model there is a lc824206xa micro-USB switch
connected over I2C and the extcon driver for that controls the regulator.
The bq24190 i2c-client *must* be registered first, because that creates
the regulator with the lc824206xa listed as its consumer. If the regulator
has not been registered yet the lc824206xa driver will end up getting
a dummy regulator.
Since in this case both the regulator provider and consumer are I2C
devices, the only way to ensure that the consumer is unregistered first
is to unregister the I2C devices in reverse order of in which they were
created.
For consistency and to avoid similar problems in the future change
x86_android_tablet_remove() to unregister all device types in reverse
order. |
In the Linux kernel, the following vulnerability has been resolved:
drm/lima: mask irqs in timeout path before hard reset
There is a race condition in which a rendering job might take just long
enough to trigger the drm sched job timeout handler but also still
complete before the hard reset is done by the timeout handler.
This runs into race conditions not expected by the timeout handler.
In some very specific cases it currently may result in a refcount
imbalance on lima_pm_idle, with a stack dump such as:
[10136.669170] WARNING: CPU: 0 PID: 0 at drivers/gpu/drm/lima/lima_devfreq.c:205 lima_devfreq_record_idle+0xa0/0xb0
...
[10136.669459] pc : lima_devfreq_record_idle+0xa0/0xb0
...
[10136.669628] Call trace:
[10136.669634] lima_devfreq_record_idle+0xa0/0xb0
[10136.669646] lima_sched_pipe_task_done+0x5c/0xb0
[10136.669656] lima_gp_irq_handler+0xa8/0x120
[10136.669666] __handle_irq_event_percpu+0x48/0x160
[10136.669679] handle_irq_event+0x4c/0xc0
We can prevent that race condition entirely by masking the irqs at the
beginning of the timeout handler, at which point we give up on waiting
for that job entirely.
The irqs will be enabled again at the next hard reset which is already
done as a recovery by the timeout handler. |
Frappe Learning is a learning system that helps users structure their content. In versions 2.33.0 and below, the image upload functionality did not adequately sanitize uploaded SVG files. This allowed users to upload SVG files containing embedded JavaScript or other potentially malicious content. Malicious SVG files could be used to execute arbitrary scripts in the context of other users. A fix for this issue is planned for version 2.34.0. |
In the Linux kernel, the following vulnerability has been resolved:
tipc: force a dst refcount before doing decryption
As it says in commit 3bc07321ccc2 ("xfrm: Force a dst refcount before
entering the xfrm type handlers"):
"Crypto requests might return asynchronous. In this case we leave the
rcu protected region, so force a refcount on the skb's destination
entry before we enter the xfrm type input/output handlers."
On TIPC decryption path it has the same problem, and skb_dst_force()
should be called before doing decryption to avoid a possible crash.
Shuang reported this issue when this warning is triggered:
[] WARNING: include/net/dst.h:337 tipc_sk_rcv+0x1055/0x1ea0 [tipc]
[] Kdump: loaded Tainted: G W --------- - - 4.18.0-496.el8.x86_64+debug
[] Workqueue: crypto cryptd_queue_worker
[] RIP: 0010:tipc_sk_rcv+0x1055/0x1ea0 [tipc]
[] Call Trace:
[] tipc_sk_mcast_rcv+0x548/0xea0 [tipc]
[] tipc_rcv+0xcf5/0x1060 [tipc]
[] tipc_aead_decrypt_done+0x215/0x2e0 [tipc]
[] cryptd_aead_crypt+0xdb/0x190
[] cryptd_queue_worker+0xed/0x190
[] process_one_work+0x93d/0x17e0 |
The YoSmart YoLink Smart Hub firmware 0382 is unencrypted, and data extracted from it can be used to determine network access credentials. |
In the Linux kernel, the following vulnerability has been resolved:
net/tcp_ao: Don't leak ao_info on error-path
It seems I introduced it together with TCP_AO_CMDF_AO_REQUIRED, on
version 5 [1] of TCP-AO patches. Quite frustrative that having all these
selftests that I've written, running kmemtest & kcov was always in todo.
[1]: https://lore.kernel.org/netdev/20230215183335.800122-5-dima@arista.com/ |
The YoSmart YoLink application through 2025-10-02 has session tokens with unexpectedly long lifetimes. |
The YoSmart YoLink API through 2025-10-02 uses an endpoint URL that is derived from a device's MAC address along with an MD5 hash of non-secret information, such as a key that begins with cf50. |
Directory Traversal vulnerability in EndRun Technologies Sonoma D12 Network Time Server (GPS) F/W 6010-0076-000 Ver 4.00 allows attackers to gain sensitive information. |
OS Command Injection vulnerability in EndRun Technologies Sonoma D12 Network Time Server (GPS) F/W 6010-0071-000 Ver 4.00 allows attackers to execute arbitrary code, cause a denial of service, gain escalated privileges, and gain sensitive information. |
OS Command Injection vulnerability in EndRun Technologies Sonoma D12 Network Time Server (GPS) F/W 6010-0071-000 Ver 4.00 allows attackers to gain sensitive information, and possibly other unspecified impacts. |
Cross Site Scripting (XSS) vulnerability in EndRun Technologies Sonoma D12 Network Time Server (GPS) F/W 6010-0071-000 Ver 4.00 allows attackers to gain sensitive information, and possibly other unspecified impacts. |
OS Command Injection vulnerability in EndRun Technologies Sonoma D12 Network Time Server (GPS) F/W 6010-0071-000 Ver 4.00 allows attackers to execute arbitrary code, cause a denial of service, gain escalated privileges, and gain sensitive information. |
OS Command Injection vulnerability in EndRun Technologies Sonoma D12 Network Time Server (GPS) F/W 6010-0071-000 Ver 4.00 allows attackers to gain sensitive information. |
Cross Site Request Forgery (CSRF) vulnerability in EndRun Technologies Sonoma D12 Network Time Server (GPS) F/W 6010-0071-000 Ver 4.00 allows attackers to execute arbitrary code, cause a denial of service, gain escalated privileges, and gain sensitive information. |
The YoSmart YoLink MQTT broker through 2025-10-02 does not enforce sufficient authorization controls to prevent cross-account attacks, allowing an attacker to remotely operate affected devices if the attacker obtains the associated device IDs. Because YoLink device IDs are predictable, an attacker can exploit this to gain full control over any other YoLink user's devices. |
Components of the YoSmart YoLink ecosystem through 2025-10-02 leverage unencrypted MQTT to communicate over the internet. An attacker with the ability to monitor network traffic could therefore obtain sensitive information or tamper with the traffic to control affected devices. This affects YoLink Hub 0382, YoLink Mobile Application 1.40.41, and YoLink MQTT Broker. |
The YoSmart YoLink Smart Hub device 0382 exposes a UART debug interface. An attacker with direct physical access can leverage this interface to read a boot log, which includes network access credentials. |
A SQL injection vulnerability has been identified in Uniclare Student Portal v2. This flaw allows remote attackers to inject arbitrary SQL commands via vulnerable input fields, enabling the execution of time-delay functions to infer database responses. |