| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A flaw was found in GLib, which is vulnerable to an integer overflow in the g_string_insert_unichar() function. When the position at which to insert the character is large, the position will overflow, leading to a buffer underwrite. |
| A vulnerability was found in OpenSSH when the VerifyHostKeyDNS option is enabled. A machine-in-the-middle attack can be performed by a malicious machine impersonating a legit server. This issue occurs due to how OpenSSH mishandles error codes in specific conditions when verifying the host key. For an attack to be considered successful, the attacker needs to manage to exhaust the client's memory resource first, turning the attack complexity high. |
| A flaw in libsoup’s HTTP header handling allows multiple Host: headers in a request and returns the last occurrence for server-side processing. Common front proxies often honor the first Host: header, so this mismatch can cause vhost confusion where a proxy routes a request to one backend but the backend interprets it as destined for another host. This discrepancy enables request-smuggling style attacks, cache poisoning, or bypassing host-based access controls when an attacker supplies duplicate Host headers. |
| If an attacker causes kdcproxy to connect to an attacker-controlled KDC server (e.g. through server-side request forgery), they can exploit the fact that kdcproxy does not enforce bounds on TCP response length to conduct a denial-of-service attack. While receiving the KDC's response, kdcproxy copies the entire buffered stream into a new
buffer on each recv() call, even when the transfer is incomplete, causing excessive memory allocation and CPU usage. Additionally, kdcproxy accepts incoming response chunks as long as the received data length is not exactly equal to the length indicated in the response
header, even when individual chunks or the total buffer exceed the maximum length of a Kerberos message. This allows an attacker to send unbounded data until the connection timeout is reached (approximately 12 seconds), exhausting server memory or CPU resources. Multiple concurrent requests can cause accept queue overflow, denying service to legitimate clients. |
| A path traversal vulnerability exists in rsync. It stems from behavior enabled by the `--inc-recursive` option, a default-enabled option for many client options and can be enabled by the server even if not explicitly enabled by the client. When using the `--inc-recursive` option, a lack of proper symlink verification coupled with deduplication checks occurring on a per-file-list basis could allow a server to write files outside of the client's intended destination directory. A malicious server could write malicious files to arbitrary locations named after valid directories/paths on the client. |
| A log spoofing flaw was found in the Tuned package due to improper sanitization of some API arguments. This flaw allows an attacker to pass a controlled sequence of characters; newlines can be inserted into the log. Instead of the 'evil' the attacker could mimic a valid TuneD log line and trick the administrator. The quotes '' are usually used in TuneD logs citing raw user input, so there will always be the ' character ending the spoofed input, and the administrator can easily overlook this. This logged string is later used in logging and in the output of utilities, for example, `tuned-adm get_instances` or other third-party programs that use Tuned's D-Bus interface for such operations. |
| A heap-based buffer overflow problem was found in glib through an incorrect calculation of buffer size in the g_escape_uri_string() function. If the string to escape contains a very large number of unacceptable characters (which would need escaping), the calculation of the length of the escaped string could overflow, leading to a potential write off the end of the newly allocated string. |
| Grafana is an open-source platform for monitoring and observability. In versions 5.3 until 9.0.3, 8.5.9, 8.4.10, and 8.3.10, it is possible for a malicious user who has authorization to log into a Grafana instance via a configured OAuth IdP which provides a login name to take over the account of another user in that Grafana instance. This can occur when the malicious user is authorized to log in to Grafana via OAuth, the malicious user's external user id is not already associated with an account in Grafana, the malicious user's email address is not already associated with an account in Grafana, and the malicious user knows the Grafana username of the target user. If these conditions are met, the malicious user can set their username in the OAuth provider to that of the target user, then go through the OAuth flow to log in to Grafana. Due to the way that external and internal user accounts are linked together during login, if the conditions above are all met then the malicious user will be able to log in to the target user's Grafana account. Versions 9.0.3, 8.5.9, 8.4.10, and 8.3.10 contain a patch for this issue. As a workaround, concerned users can disable OAuth login to their Grafana instance, or ensure that all users authorized to log in via OAuth have a corresponding user account in Grafana linked to their email address. |
| A vulnerability in the MIT Kerberos implementation allows GSSAPI-protected messages using RC4-HMAC-MD5 to be spoofed due to weaknesses in the MD5 checksum design. If RC4 is preferred over stronger encryption types, an attacker could exploit MD5 collisions to forge message integrity codes. This may lead to unauthorized message tampering. |
| A flaw was found in libssh when using the ChaCha20 cipher with the OpenSSL library. If an attacker manages to exhaust the heap space, this error is not detected and may lead to libssh using a partially initialized cipher context. This occurs because the OpenSSL error code returned aliases with the SSH_OK code, resulting in libssh not properly detecting the error returned by the OpenSSL library. This issue can lead to undefined behavior, including compromised data confidentiality and integrity or crashes. |
| An integer overflow flaw was found in the Linux kernel's create_elf_tables() function. An unprivileged local user with access to SUID (or otherwise privileged) binary could use this flaw to escalate their privileges on the system. Kernel versions 2.6.x, 3.10.x and 4.14.x are believed to be vulnerable. |
| A flaw was found in rsync which could be triggered when rsync compares file checksums. This flaw allows an attacker to manipulate the checksum length (s2length) to cause a comparison between a checksum and uninitialized memory and leak one byte of uninitialized stack data at a time. |
| An out-of-bounds read flaw was found in Shim when it tried to validate the SBAT information. This issue may expose sensitive data during the system's boot phase. |
| A DMA reentrancy issue leading to a use-after-free error was found in the e1000e NIC emulation code in QEMU. This issue could allow a privileged guest user to crash the QEMU process on the host, resulting in a denial of service. |
| Expr is an expression language and expression evaluation for Go. Prior to version 1.17.0, if the Expr expression parser is given an unbounded input string, it will attempt to compile the entire string and generate an Abstract Syntax Tree (AST) node for each part of the expression. In scenarios where input size isn’t limited, a malicious or inadvertent extremely large expression can consume excessive memory as the parser builds a huge AST. This can ultimately lead to*excessive memory usage and an Out-Of-Memory (OOM) crash of the process. This issue is relatively uncommon and will only manifest when there are no restrictions on the input size, i.e. the expression length is allowed to grow arbitrarily large. In typical use cases where inputs are bounded or validated, this problem would not occur. The problem has been patched in the latest versions of the Expr library. The fix introduces compile-time limits on the number of AST nodes and memory usage during parsing, preventing any single expression from exhausting resources. Users should upgrade to Expr version 1.17.0 or later, as this release includes the new node budget and memory limit safeguards. Upgrading to v1.17.0 ensures that extremely deep or large expressions are detected and safely aborted during compilation, avoiding the OOM condition. For users who cannot immediately upgrade, the recommended workaround is to impose an input size restriction before parsing. In practice, this means validating or limiting the length of expression strings that your application will accept. For example, set a maximum allowable number of characters (or nodes) for any expression and reject or truncate inputs that exceed this limit. By ensuring no unbounded-length expression is ever fed into the parser, one can prevent the parser from constructing a pathologically large AST and avoid potential memory exhaustion. In short, pre-validate and cap input size as a safeguard in the absence of the patch. |
| A null pointer dereference flaw was found in Libtiff via `tif_dirinfo.c`. This issue may allow an attacker to trigger memory allocation failures through certain means, such as restricting the heap space size or injecting faults, causing a segmentation fault. This can cause an application crash, eventually leading to a denial of service. |
| A stack buffer overflow was found in Internationl components for unicode (ICU ). While running the genrb binary, the 'subtag' struct overflowed at the SRBRoot::addTag function. This issue may lead to memory corruption and local arbitrary code execution. |
| A flaw was found in the integration of Active Directory and the System Security Services Daemon (SSSD) on Linux systems. In default configurations, the Kerberos local authentication plugin (sssd_krb5_localauth_plugin) is enabled, but a fallback to the an2ln plugin is possible. This fallback allows an attacker with permission to modify certain AD attributes (such as userPrincipalName or samAccountName) to impersonate privileged users, potentially resulting in unauthorized access or privilege escalation on domain-joined Linux hosts. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: l2cap: fix null-ptr-deref in l2cap_chan_timeout
There is a race condition between l2cap_chan_timeout() and
l2cap_chan_del(). When we use l2cap_chan_del() to delete the
channel, the chan->conn will be set to null. But the conn could
be dereferenced again in the mutex_lock() of l2cap_chan_timeout().
As a result the null pointer dereference bug will happen. The
KASAN report triggered by POC is shown below:
[ 472.074580] ==================================================================
[ 472.075284] BUG: KASAN: null-ptr-deref in mutex_lock+0x68/0xc0
[ 472.075308] Write of size 8 at addr 0000000000000158 by task kworker/0:0/7
[ 472.075308]
[ 472.075308] CPU: 0 PID: 7 Comm: kworker/0:0 Not tainted 6.9.0-rc5-00356-g78c0094a146b #36
[ 472.075308] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu4
[ 472.075308] Workqueue: events l2cap_chan_timeout
[ 472.075308] Call Trace:
[ 472.075308] <TASK>
[ 472.075308] dump_stack_lvl+0x137/0x1a0
[ 472.075308] print_report+0x101/0x250
[ 472.075308] ? __virt_addr_valid+0x77/0x160
[ 472.075308] ? mutex_lock+0x68/0xc0
[ 472.075308] kasan_report+0x139/0x170
[ 472.075308] ? mutex_lock+0x68/0xc0
[ 472.075308] kasan_check_range+0x2c3/0x2e0
[ 472.075308] mutex_lock+0x68/0xc0
[ 472.075308] l2cap_chan_timeout+0x181/0x300
[ 472.075308] process_one_work+0x5d2/0xe00
[ 472.075308] worker_thread+0xe1d/0x1660
[ 472.075308] ? pr_cont_work+0x5e0/0x5e0
[ 472.075308] kthread+0x2b7/0x350
[ 472.075308] ? pr_cont_work+0x5e0/0x5e0
[ 472.075308] ? kthread_blkcg+0xd0/0xd0
[ 472.075308] ret_from_fork+0x4d/0x80
[ 472.075308] ? kthread_blkcg+0xd0/0xd0
[ 472.075308] ret_from_fork_asm+0x11/0x20
[ 472.075308] </TASK>
[ 472.075308] ==================================================================
[ 472.094860] Disabling lock debugging due to kernel taint
[ 472.096136] BUG: kernel NULL pointer dereference, address: 0000000000000158
[ 472.096136] #PF: supervisor write access in kernel mode
[ 472.096136] #PF: error_code(0x0002) - not-present page
[ 472.096136] PGD 0 P4D 0
[ 472.096136] Oops: 0002 [#1] PREEMPT SMP KASAN NOPTI
[ 472.096136] CPU: 0 PID: 7 Comm: kworker/0:0 Tainted: G B 6.9.0-rc5-00356-g78c0094a146b #36
[ 472.096136] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu4
[ 472.096136] Workqueue: events l2cap_chan_timeout
[ 472.096136] RIP: 0010:mutex_lock+0x88/0xc0
[ 472.096136] Code: be 08 00 00 00 e8 f8 23 1f fd 4c 89 f7 be 08 00 00 00 e8 eb 23 1f fd 42 80 3c 23 00 74 08 48 88
[ 472.096136] RSP: 0018:ffff88800744fc78 EFLAGS: 00000246
[ 472.096136] RAX: 0000000000000000 RBX: 1ffff11000e89f8f RCX: ffffffff8457c865
[ 472.096136] RDX: 0000000000000001 RSI: 0000000000000008 RDI: ffff88800744fc78
[ 472.096136] RBP: 0000000000000158 R08: ffff88800744fc7f R09: 1ffff11000e89f8f
[ 472.096136] R10: dffffc0000000000 R11: ffffed1000e89f90 R12: dffffc0000000000
[ 472.096136] R13: 0000000000000158 R14: ffff88800744fc78 R15: ffff888007405a00
[ 472.096136] FS: 0000000000000000(0000) GS:ffff88806d200000(0000) knlGS:0000000000000000
[ 472.096136] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 472.096136] CR2: 0000000000000158 CR3: 000000000da32000 CR4: 00000000000006f0
[ 472.096136] Call Trace:
[ 472.096136] <TASK>
[ 472.096136] ? __die_body+0x8d/0xe0
[ 472.096136] ? page_fault_oops+0x6b8/0x9a0
[ 472.096136] ? kernelmode_fixup_or_oops+0x20c/0x2a0
[ 472.096136] ? do_user_addr_fault+0x1027/0x1340
[ 472.096136] ? _printk+0x7a/0xa0
[ 472.096136] ? mutex_lock+0x68/0xc0
[ 472.096136] ? add_taint+0x42/0xd0
[ 472.096136] ? exc_page_fault+0x6a/0x1b0
[ 472.096136] ? asm_exc_page_fault+0x26/0x30
[ 472.096136] ? mutex_lock+0x75/0xc0
[ 472.096136] ? mutex_lock+0x88/0xc0
[ 472.096136] ? mutex_lock+0x75/0xc0
[ 472.096136] l2cap_chan_timeo
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
tcp: defer shutdown(SEND_SHUTDOWN) for TCP_SYN_RECV sockets
TCP_SYN_RECV state is really special, it is only used by
cross-syn connections, mostly used by fuzzers.
In the following crash [1], syzbot managed to trigger a divide
by zero in tcp_rcv_space_adjust()
A socket makes the following state transitions,
without ever calling tcp_init_transfer(),
meaning tcp_init_buffer_space() is also not called.
TCP_CLOSE
connect()
TCP_SYN_SENT
TCP_SYN_RECV
shutdown() -> tcp_shutdown(sk, SEND_SHUTDOWN)
TCP_FIN_WAIT1
To fix this issue, change tcp_shutdown() to not
perform a TCP_SYN_RECV -> TCP_FIN_WAIT1 transition,
which makes no sense anyway.
When tcp_rcv_state_process() later changes socket state
from TCP_SYN_RECV to TCP_ESTABLISH, then look at
sk->sk_shutdown to finally enter TCP_FIN_WAIT1 state,
and send a FIN packet from a sane socket state.
This means tcp_send_fin() can now be called from BH
context, and must use GFP_ATOMIC allocations.
[1]
divide error: 0000 [#1] PREEMPT SMP KASAN NOPTI
CPU: 1 PID: 5084 Comm: syz-executor358 Not tainted 6.9.0-rc6-syzkaller-00022-g98369dccd2f8 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024
RIP: 0010:tcp_rcv_space_adjust+0x2df/0x890 net/ipv4/tcp_input.c:767
Code: e3 04 4c 01 eb 48 8b 44 24 38 0f b6 04 10 84 c0 49 89 d5 0f 85 a5 03 00 00 41 8b 8e c8 09 00 00 89 e8 29 c8 48 0f af c3 31 d2 <48> f7 f1 48 8d 1c 43 49 8d 96 76 08 00 00 48 89 d0 48 c1 e8 03 48
RSP: 0018:ffffc900031ef3f0 EFLAGS: 00010246
RAX: 0c677a10441f8f42 RBX: 000000004fb95e7e RCX: 0000000000000000
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
RBP: 0000000027d4b11f R08: ffffffff89e535a4 R09: 1ffffffff25e6ab7
R10: dffffc0000000000 R11: ffffffff8135e920 R12: ffff88802a9f8d30
R13: dffffc0000000000 R14: ffff88802a9f8d00 R15: 1ffff1100553f2da
FS: 00005555775c0380(0000) GS:ffff8880b9500000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f1155bf2304 CR3: 000000002b9f2000 CR4: 0000000000350ef0
Call Trace:
<TASK>
tcp_recvmsg_locked+0x106d/0x25a0 net/ipv4/tcp.c:2513
tcp_recvmsg+0x25d/0x920 net/ipv4/tcp.c:2578
inet6_recvmsg+0x16a/0x730 net/ipv6/af_inet6.c:680
sock_recvmsg_nosec net/socket.c:1046 [inline]
sock_recvmsg+0x109/0x280 net/socket.c:1068
____sys_recvmsg+0x1db/0x470 net/socket.c:2803
___sys_recvmsg net/socket.c:2845 [inline]
do_recvmmsg+0x474/0xae0 net/socket.c:2939
__sys_recvmmsg net/socket.c:3018 [inline]
__do_sys_recvmmsg net/socket.c:3041 [inline]
__se_sys_recvmmsg net/socket.c:3034 [inline]
__x64_sys_recvmmsg+0x199/0x250 net/socket.c:3034
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf5/0x240 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7faeb6363db9
Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 c1 17 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007ffcc1997168 EFLAGS: 00000246 ORIG_RAX: 000000000000012b
RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007faeb6363db9
RDX: 0000000000000001 RSI: 0000000020000bc0 RDI: 0000000000000005
RBP: 0000000000000000 R08: 0000000000000000 R09: 000000000000001c
R10: 0000000000000122 R11: 0000000000000246 R12: 0000000000000000
R13: 0000000000000000 R14: 0000000000000001 R15: 0000000000000001 |