| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
blk-mq: use quiesced elevator switch when reinitializing queues
The hctx's run_work may be racing with the elevator switch when
reinitializing hardware queues. The queue is merely frozen in this
context, but that only prevents requests from allocating and doesn't
stop the hctx work from running. The work may get an elevator pointer
that's being torn down, and can result in use-after-free errors and
kernel panics (example below). Use the quiesced elevator switch instead,
and make the previous one static since it is now only used locally.
nvme nvme0: resetting controller
nvme nvme0: 32/0/0 default/read/poll queues
BUG: kernel NULL pointer dereference, address: 0000000000000008
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 80000020c8861067 P4D 80000020c8861067 PUD 250f8c8067 PMD 0
Oops: 0000 [#1] SMP PTI
Workqueue: kblockd blk_mq_run_work_fn
RIP: 0010:kyber_has_work+0x29/0x70
...
Call Trace:
__blk_mq_do_dispatch_sched+0x83/0x2b0
__blk_mq_sched_dispatch_requests+0x12e/0x170
blk_mq_sched_dispatch_requests+0x30/0x60
__blk_mq_run_hw_queue+0x2b/0x50
process_one_work+0x1ef/0x380
worker_thread+0x2d/0x3e0 |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: brcmfmac: Fix potential shift-out-of-bounds in brcmf_fw_alloc_request()
This patch fixes a shift-out-of-bounds in brcmfmac that occurs in
BIT(chiprev) when a 'chiprev' provided by the device is too large.
It should also not be equal to or greater than BITS_PER_TYPE(u32)
as we do bitwise AND with a u32 variable and BIT(chiprev). The patch
adds a check that makes the function return NULL if that is the case.
Note that the NULL case is later handled by the bus-specific caller,
brcmf_usb_probe_cb() or brcmf_usb_reset_resume(), for example.
Found by a modified version of syzkaller.
UBSAN: shift-out-of-bounds in drivers/net/wireless/broadcom/brcm80211/brcmfmac/firmware.c
shift exponent 151055786 is too large for 64-bit type 'long unsigned int'
CPU: 0 PID: 1885 Comm: kworker/0:2 Tainted: G O 5.14.0+ #132
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58e9a3f-prebuilt.qemu.org 04/01/2014
Workqueue: usb_hub_wq hub_event
Call Trace:
dump_stack_lvl+0x57/0x7d
ubsan_epilogue+0x5/0x40
__ubsan_handle_shift_out_of_bounds.cold+0x53/0xdb
? lock_chain_count+0x20/0x20
brcmf_fw_alloc_request.cold+0x19/0x3ea
? brcmf_fw_get_firmwares+0x250/0x250
? brcmf_usb_ioctl_resp_wait+0x1a7/0x1f0
brcmf_usb_get_fwname+0x114/0x1a0
? brcmf_usb_reset_resume+0x120/0x120
? number+0x6c4/0x9a0
brcmf_c_process_clm_blob+0x168/0x590
? put_dec+0x90/0x90
? enable_ptr_key_workfn+0x20/0x20
? brcmf_common_pd_remove+0x50/0x50
? rcu_read_lock_sched_held+0xa1/0xd0
brcmf_c_preinit_dcmds+0x673/0xc40
? brcmf_c_set_joinpref_default+0x100/0x100
? rcu_read_lock_sched_held+0xa1/0xd0
? rcu_read_lock_bh_held+0xb0/0xb0
? lock_acquire+0x19d/0x4e0
? find_held_lock+0x2d/0x110
? brcmf_usb_deq+0x1cc/0x260
? mark_held_locks+0x9f/0xe0
? lockdep_hardirqs_on_prepare+0x273/0x3e0
? _raw_spin_unlock_irqrestore+0x47/0x50
? trace_hardirqs_on+0x1c/0x120
? brcmf_usb_deq+0x1a7/0x260
? brcmf_usb_rx_fill_all+0x5a/0xf0
brcmf_attach+0x246/0xd40
? wiphy_new_nm+0x1476/0x1d50
? kmemdup+0x30/0x40
brcmf_usb_probe+0x12de/0x1690
? brcmf_usbdev_qinit.constprop.0+0x470/0x470
usb_probe_interface+0x25f/0x710
really_probe+0x1be/0xa90
__driver_probe_device+0x2ab/0x460
? usb_match_id.part.0+0x88/0xc0
driver_probe_device+0x49/0x120
__device_attach_driver+0x18a/0x250
? driver_allows_async_probing+0x120/0x120
bus_for_each_drv+0x123/0x1a0
? bus_rescan_devices+0x20/0x20
? lockdep_hardirqs_on_prepare+0x273/0x3e0
? trace_hardirqs_on+0x1c/0x120
__device_attach+0x207/0x330
? device_bind_driver+0xb0/0xb0
? kobject_uevent_env+0x230/0x12c0
bus_probe_device+0x1a2/0x260
device_add+0xa61/0x1ce0
? __mutex_unlock_slowpath+0xe7/0x660
? __fw_devlink_link_to_suppliers+0x550/0x550
usb_set_configuration+0x984/0x1770
? kernfs_create_link+0x175/0x230
usb_generic_driver_probe+0x69/0x90
usb_probe_device+0x9c/0x220
really_probe+0x1be/0xa90
__driver_probe_device+0x2ab/0x460
driver_probe_device+0x49/0x120
__device_attach_driver+0x18a/0x250
? driver_allows_async_probing+0x120/0x120
bus_for_each_drv+0x123/0x1a0
? bus_rescan_devices+0x20/0x20
? lockdep_hardirqs_on_prepare+0x273/0x3e0
? trace_hardirqs_on+0x1c/0x120
__device_attach+0x207/0x330
? device_bind_driver+0xb0/0xb0
? kobject_uevent_env+0x230/0x12c0
bus_probe_device+0x1a2/0x260
device_add+0xa61/0x1ce0
? __fw_devlink_link_to_suppliers+0x550/0x550
usb_new_device.cold+0x463/0xf66
? hub_disconnect+0x400/0x400
? _raw_spin_unlock_irq+0x24/0x30
hub_event+0x10d5/0x3330
? hub_port_debounce+0x280/0x280
? __lock_acquire+0x1671/0x5790
? wq_calc_node_cpumask+0x170/0x2a0
? lock_release+0x640/0x640
? rcu_read_lock_sched_held+0xa1/0xd0
? rcu_read_lock_bh_held+0xb0/0xb0
? lockdep_hardirqs_on_prepare+0x273/0x3e0
process_one_work+0x873/0x13e0
? lock_release+0x640/0x640
? pwq_dec_nr_in_flight+0x320/0x320
? rwlock_bug.part.0+0x90/0x90
worker_thread+0x8b/0xd10
? __kthread_parkme+0xd9/0x1d0
? pr
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
blk-iolatency: Fix memory leak on add_disk() failures
When a gendisk is successfully initialized but add_disk() fails such as when
a loop device has invalid number of minor device numbers specified,
blkcg_init_disk() is called during init and then blkcg_exit_disk() during
error handling. Unfortunately, iolatency gets initialized in the former but
doesn't get cleaned up in the latter.
This is because, in non-error cases, the cleanup is performed by
del_gendisk() calling rq_qos_exit(), the assumption being that rq_qos
policies, iolatency being one of them, can only be activated once the disk
is fully registered and visible. That assumption is true for wbt and iocost,
but not so for iolatency as it gets initialized before add_disk() is called.
It is desirable to lazy-init rq_qos policies because they are optional
features and add to hot path overhead once initialized - each IO has to walk
all the registered rq_qos policies. So, we want to switch iolatency to lazy
init too. However, that's a bigger change. As a fix for the immediate
problem, let's just add an extra call to rq_qos_exit() in blkcg_exit_disk().
This is safe because duplicate calls to rq_qos_exit() become noop's. |
| In the Linux kernel, the following vulnerability has been resolved:
dm thin: Fix ABBA deadlock between shrink_slab and dm_pool_abort_metadata
Following concurrent processes:
P1(drop cache) P2(kworker)
drop_caches_sysctl_handler
drop_slab
shrink_slab
down_read(&shrinker_rwsem) - LOCK A
do_shrink_slab
super_cache_scan
prune_icache_sb
dispose_list
evict
ext4_evict_inode
ext4_clear_inode
ext4_discard_preallocations
ext4_mb_load_buddy_gfp
ext4_mb_init_cache
ext4_read_block_bitmap_nowait
ext4_read_bh_nowait
submit_bh
dm_submit_bio
do_worker
process_deferred_bios
commit
metadata_operation_failed
dm_pool_abort_metadata
down_write(&pmd->root_lock) - LOCK B
__destroy_persistent_data_objects
dm_block_manager_destroy
dm_bufio_client_destroy
unregister_shrinker
down_write(&shrinker_rwsem)
thin_map |
dm_thin_find_block ↓
down_read(&pmd->root_lock) --> ABBA deadlock
, which triggers hung task:
[ 76.974820] INFO: task kworker/u4:3:63 blocked for more than 15 seconds.
[ 76.976019] Not tainted 6.1.0-rc4-00011-g8f17dd350364-dirty #910
[ 76.978521] task:kworker/u4:3 state:D stack:0 pid:63 ppid:2
[ 76.978534] Workqueue: dm-thin do_worker
[ 76.978552] Call Trace:
[ 76.978564] __schedule+0x6ba/0x10f0
[ 76.978582] schedule+0x9d/0x1e0
[ 76.978588] rwsem_down_write_slowpath+0x587/0xdf0
[ 76.978600] down_write+0xec/0x110
[ 76.978607] unregister_shrinker+0x2c/0xf0
[ 76.978616] dm_bufio_client_destroy+0x116/0x3d0
[ 76.978625] dm_block_manager_destroy+0x19/0x40
[ 76.978629] __destroy_persistent_data_objects+0x5e/0x70
[ 76.978636] dm_pool_abort_metadata+0x8e/0x100
[ 76.978643] metadata_operation_failed+0x86/0x110
[ 76.978649] commit+0x6a/0x230
[ 76.978655] do_worker+0xc6e/0xd90
[ 76.978702] process_one_work+0x269/0x630
[ 76.978714] worker_thread+0x266/0x630
[ 76.978730] kthread+0x151/0x1b0
[ 76.978772] INFO: task test.sh:2646 blocked for more than 15 seconds.
[ 76.979756] Not tainted 6.1.0-rc4-00011-g8f17dd350364-dirty #910
[ 76.982111] task:test.sh state:D stack:0 pid:2646 ppid:2459
[ 76.982128] Call Trace:
[ 76.982139] __schedule+0x6ba/0x10f0
[ 76.982155] schedule+0x9d/0x1e0
[ 76.982159] rwsem_down_read_slowpath+0x4f4/0x910
[ 76.982173] down_read+0x84/0x170
[ 76.982177] dm_thin_find_block+0x4c/0xd0
[ 76.982183] thin_map+0x201/0x3d0
[ 76.982188] __map_bio+0x5b/0x350
[ 76.982195] dm_submit_bio+0x2b6/0x930
[ 76.982202] __submit_bio+0x123/0x2d0
[ 76.982209] submit_bio_noacct_nocheck+0x101/0x3e0
[ 76.982222] submit_bio_noacct+0x389/0x770
[ 76.982227] submit_bio+0x50/0xc0
[ 76.982232] submit_bh_wbc+0x15e/0x230
[ 76.982238] submit_bh+0x14/0x20
[ 76.982241] ext4_read_bh_nowait+0xc5/0x130
[ 76.982247] ext4_read_block_bitmap_nowait+0x340/0xc60
[ 76.982254] ext4_mb_init_cache+0x1ce/0xdc0
[ 76.982259] ext4_mb_load_buddy_gfp+0x987/0xfa0
[ 76.982263] ext4_discard_preallocations+0x45d/0x830
[ 76.982274] ext4_clear_inode+0x48/0xf0
[ 76.982280] ext4_evict_inode+0xcf/0xc70
[ 76.982285] evict+0x119/0x2b0
[ 76.982290] dispose_list+0x43/0xa0
[ 76.982294] prune_icache_sb+0x64/0x90
[ 76.982298] super_cache_scan+0x155/0x210
[ 76.982303] do_shrink_slab+0x19e/0x4e0
[ 76.982310] shrink_slab+0x2bd/0x450
[ 76.982317] drop_slab+0xcc/0x1a0
[ 76.982323] drop_caches_sysctl_handler+0xb7/0xe0
[ 76.982327] proc_sys_call_handler+0x1bc/0x300
[ 76.982331] proc_sys_write+0x17/0x20
[ 76.982334] vfs_write+0x3d3/0x570
[ 76.982342] ksys_write+0x73/0x160
[ 76.982347] __x64_sys_write+0x1e/0x30
[ 76.982352] do_syscall_64+0x35/0x80
[ 76.982357] entry_SYSCALL_64_after_hwframe+0x63/0xcd
Funct
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
media: i2c: hi846: Fix memory leak in hi846_parse_dt()
If any of the checks related to the supported link frequencies fail, then
the V4L2 fwnode resources don't get released before returning, which leads
to a memleak. Fix this by properly freeing the V4L2 fwnode data in a
designated label. |
| In the Linux kernel, the following vulnerability has been resolved:
media: solo6x10: fix possible memory leak in solo_sysfs_init()
If device_register() returns error in solo_sysfs_init(), the
name allocated by dev_set_name() need be freed. As comment of
device_register() says, it should use put_device() to give up
the reference in the error path. So fix this by calling
put_device(), then the name can be freed in kobject_cleanup(). |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix uninititialized value in 'ext4_evict_inode'
Syzbot found the following issue:
=====================================================
BUG: KMSAN: uninit-value in ext4_evict_inode+0xdd/0x26b0 fs/ext4/inode.c:180
ext4_evict_inode+0xdd/0x26b0 fs/ext4/inode.c:180
evict+0x365/0x9a0 fs/inode.c:664
iput_final fs/inode.c:1747 [inline]
iput+0x985/0xdd0 fs/inode.c:1773
__ext4_new_inode+0xe54/0x7ec0 fs/ext4/ialloc.c:1361
ext4_mknod+0x376/0x840 fs/ext4/namei.c:2844
vfs_mknod+0x79d/0x830 fs/namei.c:3914
do_mknodat+0x47d/0xaa0
__do_sys_mknodat fs/namei.c:3992 [inline]
__se_sys_mknodat fs/namei.c:3989 [inline]
__ia32_sys_mknodat+0xeb/0x150 fs/namei.c:3989
do_syscall_32_irqs_on arch/x86/entry/common.c:112 [inline]
__do_fast_syscall_32+0xa2/0x100 arch/x86/entry/common.c:178
do_fast_syscall_32+0x33/0x70 arch/x86/entry/common.c:203
do_SYSENTER_32+0x1b/0x20 arch/x86/entry/common.c:246
entry_SYSENTER_compat_after_hwframe+0x70/0x82
Uninit was created at:
__alloc_pages+0x9f1/0xe80 mm/page_alloc.c:5578
alloc_pages+0xaae/0xd80 mm/mempolicy.c:2285
alloc_slab_page mm/slub.c:1794 [inline]
allocate_slab+0x1b5/0x1010 mm/slub.c:1939
new_slab mm/slub.c:1992 [inline]
___slab_alloc+0x10c3/0x2d60 mm/slub.c:3180
__slab_alloc mm/slub.c:3279 [inline]
slab_alloc_node mm/slub.c:3364 [inline]
slab_alloc mm/slub.c:3406 [inline]
__kmem_cache_alloc_lru mm/slub.c:3413 [inline]
kmem_cache_alloc_lru+0x6f3/0xb30 mm/slub.c:3429
alloc_inode_sb include/linux/fs.h:3117 [inline]
ext4_alloc_inode+0x5f/0x860 fs/ext4/super.c:1321
alloc_inode+0x83/0x440 fs/inode.c:259
new_inode_pseudo fs/inode.c:1018 [inline]
new_inode+0x3b/0x430 fs/inode.c:1046
__ext4_new_inode+0x2a7/0x7ec0 fs/ext4/ialloc.c:959
ext4_mkdir+0x4d5/0x1560 fs/ext4/namei.c:2992
vfs_mkdir+0x62a/0x870 fs/namei.c:4035
do_mkdirat+0x466/0x7b0 fs/namei.c:4060
__do_sys_mkdirat fs/namei.c:4075 [inline]
__se_sys_mkdirat fs/namei.c:4073 [inline]
__ia32_sys_mkdirat+0xc4/0x120 fs/namei.c:4073
do_syscall_32_irqs_on arch/x86/entry/common.c:112 [inline]
__do_fast_syscall_32+0xa2/0x100 arch/x86/entry/common.c:178
do_fast_syscall_32+0x33/0x70 arch/x86/entry/common.c:203
do_SYSENTER_32+0x1b/0x20 arch/x86/entry/common.c:246
entry_SYSENTER_compat_after_hwframe+0x70/0x82
CPU: 1 PID: 4625 Comm: syz-executor.2 Not tainted 6.1.0-rc4-syzkaller-62821-gcb231e2f67ec #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/26/2022
=====================================================
Now, 'ext4_alloc_inode()' didn't init 'ei->i_flags'. If new inode failed
before set 'ei->i_flags' in '__ext4_new_inode()', then do 'iput()'. As after
6bc0d63dad7f commit will access 'ei->i_flags' in 'ext4_evict_inode()' which
will lead to access uninit-value.
To solve above issue just init 'ei->i_flags' in 'ext4_alloc_inode()'. |
| GLPI is a free asset and IT management software package. From version 0.85 to before 10.0.23, an authenticated user can perform a SQL injection. This issue has been patched in version 10.0.23. |
| Redis is an open source, in-memory database that persists on disk. From 2.8 to before 8.0.3, 7.4.5, 7.2.10, and 6.2.19, an authenticated user may use a specially crafted string to trigger a stack/heap out of bounds write on hyperloglog operations, potentially leading to remote code execution. The bug likely affects all Redis versions with hyperloglog operations implemented. This vulnerability is fixed in 8.0.3, 7.4.5, 7.2.10, and 6.2.19. An additional workaround to mitigate the problem without patching the redis-server executable is to prevent users from executing hyperloglog operations. This can be done using ACL to restrict HLL commands. |
| Early versions of Operator-SDK provided an insecure method to allow operator containers to run in environments that used a random UID. Operator-SDK before 0.15.2 provided a script, user_setup, which modifies the permissions of the /etc/passwd file to 664 during build time. Developers who used Operator-SDK before 0.15.2 to scaffold their operator may still be impacted by this if the insecure user_setup script is still being used to build new container images.
In affected images, the /etc/passwd file is created during build time with group-writable permissions and a group ownership of root (gid=0). An attacker who can execute commands within an affected container, even as a non-root user, may be able to leverage their membership in the root group to modify the /etc/passwd file. This could allow the attacker to add a new user with any arbitrary UID, including UID 0, leading to full root privileges within the container. |
| NanoMQ MQTT Broker (NanoMQ) is an all-around Edge Messaging Platform. In version 0.24.6, NanoMQ has a protocol parsing / forwarding inconsistency when handling shared subscriptions ($share/). A malformed SUBSCRIBE topic such as $share/ab (missing the second /) is not strictly validated during the subscription stage, so the invalid Topic Filter is stored into the subscription table. Later, when any PUBLISH matches this subscription, the broker send path (nmq_pipe_send_start_v4/v5) performs a second $share/ parsing using strchr() and increments the returned pointer without NULL checks. If the second strchr() returns NULL, sub_topic++ turns the pointer into an invalid address (e.g. 0x1). This invalid pointer is then passed into topic_filtern(), which triggers strlen() and crashes with SIGSEGV. The crash is stable and remotely triggerable. This issue has been patched in version 0.24.7. |
| ESF-IDF is the Espressif Internet of Things (IOT) Development Framework. In versions 5.5.2, 5.4.3, 5.3.4, 5.2.6, and 5.1.6, a vulnerability exists in the WPS (Wi-Fi Protected Setup) Enrollee implementation where malformed EAP-WSC packets with truncated payloads can cause integer underflow during fragment length calculation. When processing EAP-Expanded (WSC) messages, the code computes frag_len by subtracting header sizes from the total packet length. If an attacker sends a packet where the EAP Length field covers only the header and flags but omits the expected payload (such as the 2-byte Message Length field when WPS_MSG_FLAG_LEN is set), frag_len becomes negative. This negative value is then implicitly cast to size_t when passed to wpabuf_put_data(), resulting in a very large unsigned value. This issue has been patched in versions 5.5.3, 5.4.4, 5.3.5, 5.2.7, and 5.1.7. |
| ESF-IDF is the Espressif Internet of Things (IOT) Development Framework. In versions 5.5.2, 5.4.3, 5.3.4, 5.2.6, and 5.1.6, a use-after-free vulnerability was reported in the BLE provisioning transport (protocomm_ble) layer. The issue can be triggered by a remote BLE client while the device is in provisioning mode. The vulnerability occurred when provisioning was stopped with keep_ble_on = true. In this configuration, internal protocomm_ble state and GATT metadata were freed while the BLE stack and GATT services remained active. Subsequent BLE read or write callbacks dereferenced freed memory, allowing a connected or newly connected client to trigger invalid memory acces. This issue has been patched in versions 5.5.3, 5.4.4, 5.3.5, 5.2.7, and 5.1.7. |
| The unstructured library provides open-source components for ingesting and pre-processing images and text documents, such as PDFs, HTML, Word docs, and many more. Prior to version 0.18.18, a path traversal vulnerability in the partition_msg function allows an attacker to write or overwrite arbitrary files on the filesystem when processing malicious MSG files with attachments. This issue has been patched in version 0.18.18. |
| aiohttp is an asynchronous HTTP client/server framework for asyncio and Python. When using aiohttp as a web server and configuring static routes, it is necessary to specify the root path for static files. Additionally, the option 'follow_symlinks' can be used to determine whether to follow symbolic links outside the static root directory. When 'follow_symlinks' is set to True, there is no validation to check if reading a file is within the root directory. This can lead to directory traversal vulnerabilities, resulting in unauthorized access to arbitrary files on the system, even when symlinks are not present. Disabling follow_symlinks and using a reverse proxy are encouraged mitigations. Version 3.9.2 fixes this issue. |
| ESF-IDF is the Espressif Internet of Things (IOT) Development Framework. In versions 5.5.2, 5.4.3, 5.3.4, 5.2.6, and 5.1.6, an out-of-bounds read vulnerability was reported in the BLE ATT Prepare Write handling of the BLE provisioning transport (protocomm_ble). The issue can be triggered by a remote BLE client while the device is in provisioning mode. The transport accumulated prepared-write fragments in a fixed-size buffer but incorrectly tracked the cumulative length. By sending repeated prepare write requests with overlapping offsets, a remote client could cause the reported length to exceed the allocated buffer size. This inflated length was then passed to provisioning handlers during execute-write processing, resulting in an out-of-bounds read and potential memory corruption. This issue has been patched in versions 5.5.3, 5.4.4, 5.3.5, 5.2.7, and 5.1.7. |
| apko allows users to build and publish OCI container images built from apk packages. From version 0.14.8 to before 1.1.0, expandapk.Split drains the first gzip stream of an APK archive via io.Copy(io.Discard, gzi) without explicit bounds. With an attacker-controlled input stream, this can force large gzip inflation work and lead to resource exhaustion (availability impact). The Split function reads the first tar header, then drains the remainder of the gzip stream by reading from the gzip reader directly without any maximum uncompressed byte limit or inflate-ratio cap. A caller that parses attacker-controlled APK streams may be forced to spend excessive CPU time inflating gzip data, leading to timeouts or process slowdown. This issue has been patched in version 1.1.0. |
| Apollo Server is an open-source, spec-compliant GraphQL server that's compatible with any GraphQL client, including Apollo Client. In versions from 2.0.0 to 3.13.0, 4.2.0 to before 4.13.0, and 5.0.0 to before 5.4.0, the default configuration of startStandaloneServer from @apollo/server/standalone is vulnerable to denial of service (DoS) attacks through specially crafted request bodies with exotic character set encodings. This issue does not affect users that use @apollo/server as a dependency for integration packages, like @as-integrations/express5 or @as-integrations/next, only direct usage of startStandaloneServer. |
| apko allows users to build and publish OCI container images built from apk packages. From version 0.14.8 to before 1.1.1, a path traversal vulnerability was discovered in apko's dirFS filesystem abstraction. An attacker who can supply a malicious APK package (e.g., via a compromised or typosquatted repository) could create directories or symlinks outside the intended installation root. The MkdirAll, Mkdir, and Symlink methods in pkg/apk/fs/rwosfs.go use filepath.Join() without validating that the resulting path stays within the base directory. This issue has been patched in version 1.1.1. |
| apko allows users to build and publish OCI container images built from apk packages. From version 0.14.8 to before 1.1.1, an attacker who controls or compromises an APK repository used by apko could cause resource exhaustion on the build host. The ExpandApk function in pkg/apk/expandapk/expandapk.go expands .apk streams without enforcing decompression limits, allowing a malicious repository to serve a small, highly-compressed .apk that inflates into a large tar stream, consuming excessive disk space and CPU time, causing build failures or denial of service. This issue has been patched in version 1.1.1. |