CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
A vulnerability was found in Frappe LMS 2.34.x/2.35.0. The impacted element is an unknown function of the component Incomplete Fix CVE-2025-55006. Performing manipulation results in cross site scripting. Remote exploitation of the attack is possible. The exploit has been made public and could be used. The affected component should be upgraded. The vendor was informed early about a total of four security issues and confirmed that those have been fixed. However, the release notes on GitHub do not mention them. |
A vulnerability was determined in Frappe LMS 2.35.0. This affects an unknown function of the component Course Handler. Executing manipulation of the argument Description can lead to cross site scripting. The attack can be executed remotely. The exploit has been publicly disclosed and may be utilized. It is suggested to upgrade the affected component. The vendor was informed early about a total of four security issues and confirmed that those have been fixed. However, the release notes on GitHub do not mention them. |
A vulnerability has been found in Frappe LMS 2.35.0. The affected element is an unknown function of the file /courses/ of the component Unpublished Course Handler. Such manipulation leads to improper access controls. The attack may be launched remotely. This attack is characterized by high complexity. The exploitability is described as difficult. The exploit has been disclosed to the public and may be used. You should upgrade the affected component. The vendor was informed early about a total of four security issues and confirmed that those have been fixed. However, the release notes on GitHub do not mention them. |
A flaw has been found in Frappe LMS 2.35.0. Impacted is an unknown function of the file /files/ of the component Assignment Picture Handler. This manipulation causes direct request. The attack may be initiated remotely. The attack's complexity is rated as high. The exploitability is considered difficult. The exploit has been published and may be used. It is advisable to upgrade the affected component. The vendor was informed early about a total of four security issues and confirmed that those have been fixed. However, the release notes on GitHub do not mention them. |
Local File Inclusion in dagster._grpc.impl.get_notebook_data in Dagster 1.10.14 allows attackers with access to the gRPC server to read arbitrary files by supplying path traversal sequences in the notebook_path field of ExternalNotebookData requests, bypassing the intended extension-based check. |
Remote Code Execution in letta.server.rest_api.routers.v1.tools.run_tool_from_source in letta-ai Letta 0.7.12 allows remote attackers to execute arbitrary Python code and system commands via crafted payloads to the /v1/tools/run endpoint, bypassing intended sandbox restrictions. |
A weakness has been identified in D-Link DI-7001 MINI 24.04.18B1. Impacted is an unknown function of the file /upgrade_filter.asp. This manipulation of the argument path causes os command injection. The attack may be initiated remotely. The exploit has been made available to the public and could be exploited. |
The femanager extension for TYPO3 allows Insecure Direct Object Reference resulting in unauthorized modification of userdata. This issue affects femanager version 6.4.1 and below, 7.0.0 to 7.5.2 and 8.0.0 to 8.3.0 |
A security vulnerability has been detected in D-Link DI-7001 MINI 24.04.18B1. The affected element is an unknown function of the file /dbsrv.asp. Such manipulation of the argument str leads to buffer overflow. The attack may be launched remotely. The exploit has been disclosed publicly and may be used. |
A vulnerability has been found in fuyang_lipengjun platform up to ca9aceff6902feb7b0b6bf510842aea88430796a and classified as critical. Affected by this vulnerability is the function queryPage of the file com/platform/controller/ScheduleJobLogController.java. The manipulation of the argument beanName/methodName leads to sql injection. The attack can be launched remotely. The exploit has been disclosed to the public and may be used. This product takes the approach of rolling releases to provide continious delivery. Therefore, version details for affected and updated releases are not available. |
In the Linux kernel, the following vulnerability has been resolved:
ice: Add a per-VF limit on number of FDIR filters
While the iavf driver adds a s/w limit (128) on the number of FDIR
filters that the VF can request, a malicious VF driver can request more
than that and exhaust the resources for other VFs.
Add a similar limit in ice. |
In the Linux kernel, the following vulnerability has been resolved:
nilfs2: handle inconsistent state in nilfs_btnode_create_block()
Syzbot reported that a buffer state inconsistency was detected in
nilfs_btnode_create_block(), triggering a kernel bug.
It is not appropriate to treat this inconsistency as a bug; it can occur
if the argument block address (the buffer index of the newly created
block) is a virtual block number and has been reallocated due to
corruption of the bitmap used to manage its allocation state.
So, modify nilfs_btnode_create_block() and its callers to treat it as a
possible filesystem error, rather than triggering a kernel bug. |
In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix return value of f2fs_convert_inline_inode()
If device is readonly, make f2fs_convert_inline_inode()
return EROFS instead of zero, otherwise it may trigger
panic during writeback of inline inode's dirty page as
below:
f2fs_write_single_data_page+0xbb6/0x1e90 fs/f2fs/data.c:2888
f2fs_write_cache_pages fs/f2fs/data.c:3187 [inline]
__f2fs_write_data_pages fs/f2fs/data.c:3342 [inline]
f2fs_write_data_pages+0x1efe/0x3a90 fs/f2fs/data.c:3369
do_writepages+0x359/0x870 mm/page-writeback.c:2634
filemap_fdatawrite_wbc+0x125/0x180 mm/filemap.c:397
__filemap_fdatawrite_range mm/filemap.c:430 [inline]
file_write_and_wait_range+0x1aa/0x290 mm/filemap.c:788
f2fs_do_sync_file+0x68a/0x1ae0 fs/f2fs/file.c:276
generic_write_sync include/linux/fs.h:2806 [inline]
f2fs_file_write_iter+0x7bd/0x24e0 fs/f2fs/file.c:4977
call_write_iter include/linux/fs.h:2114 [inline]
new_sync_write fs/read_write.c:497 [inline]
vfs_write+0xa72/0xc90 fs/read_write.c:590
ksys_write+0x1a0/0x2c0 fs/read_write.c:643
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf5/0x240 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f |
In the Linux kernel, the following vulnerability has been resolved:
netfilter: ipset: Hold module reference while requesting a module
User space may unload ip_set.ko while it is itself requesting a set type
backend module, leading to a kernel crash. The race condition may be
provoked by inserting an mdelay() right after the nfnl_unlock() call. |
In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Update log->page_{mask,bits} if log->page_size changed
If an NTFS file system is mounted to another system with different
PAGE_SIZE from the original system, log->page_size will change in
log_replay(), but log->page_{mask,bits} don't change correspondingly.
This will cause a panic because "u32 bytes = log->page_size - page_off"
will get a negative value in the later read_log_page(). |
In the Linux kernel, the following vulnerability has been resolved:
ext4: make sure the first directory block is not a hole
The syzbot constructs a directory that has no dirblock but is non-inline,
i.e. the first directory block is a hole. And no errors are reported when
creating files in this directory in the following flow.
ext4_mknod
...
ext4_add_entry
// Read block 0
ext4_read_dirblock(dir, block, DIRENT)
bh = ext4_bread(NULL, inode, block, 0)
if (!bh && (type == INDEX || type == DIRENT_HTREE))
// The first directory block is a hole
// But type == DIRENT, so no error is reported.
After that, we get a directory block without '.' and '..' but with a valid
dentry. This may cause some code that relies on dot or dotdot (such as
make_indexed_dir()) to crash.
Therefore when ext4_read_dirblock() finds that the first directory block
is a hole report that the filesystem is corrupted and return an error to
avoid loading corrupted data from disk causing something bad. |
In the Linux kernel, the following vulnerability has been resolved:
udf: Avoid using corrupted block bitmap buffer
When the filesystem block bitmap is corrupted, we detect the corruption
while loading the bitmap and fail the allocation with error. However the
next allocation from the same bitmap will notice the bitmap buffer is
already loaded and tries to allocate from the bitmap with mixed results
(depending on the exact nature of the bitmap corruption). Fix the
problem by using BH_verified bit to indicate whether the bitmap is valid
or not. |
In the Linux kernel, the following vulnerability has been resolved:
sysctl: always initialize i_uid/i_gid
Always initialize i_uid/i_gid inside the sysfs core so set_ownership()
can safely skip setting them.
Commit 5ec27ec735ba ("fs/proc/proc_sysctl.c: fix the default values of
i_uid/i_gid on /proc/sys inodes.") added defaults for i_uid/i_gid when
set_ownership() was not implemented. It also missed adjusting
net_ctl_set_ownership() to use the same default values in case the
computation of a better value failed. |
In the Linux kernel, the following vulnerability has been resolved:
mm/huge_memory: avoid PMD-size page cache if needed
xarray can't support arbitrary page cache size. the largest and supported
page cache size is defined as MAX_PAGECACHE_ORDER by commit 099d90642a71
("mm/filemap: make MAX_PAGECACHE_ORDER acceptable to xarray"). However,
it's possible to have 512MB page cache in the huge memory's collapsing
path on ARM64 system whose base page size is 64KB. 512MB page cache is
breaking the limitation and a warning is raised when the xarray entry is
split as shown in the following example.
[root@dhcp-10-26-1-207 ~]# cat /proc/1/smaps | grep KernelPageSize
KernelPageSize: 64 kB
[root@dhcp-10-26-1-207 ~]# cat /tmp/test.c
:
int main(int argc, char **argv)
{
const char *filename = TEST_XFS_FILENAME;
int fd = 0;
void *buf = (void *)-1, *p;
int pgsize = getpagesize();
int ret = 0;
if (pgsize != 0x10000) {
fprintf(stdout, "System with 64KB base page size is required!\n");
return -EPERM;
}
system("echo 0 > /sys/devices/virtual/bdi/253:0/read_ahead_kb");
system("echo 1 > /proc/sys/vm/drop_caches");
/* Open the xfs file */
fd = open(filename, O_RDONLY);
assert(fd > 0);
/* Create VMA */
buf = mmap(NULL, TEST_MEM_SIZE, PROT_READ, MAP_SHARED, fd, 0);
assert(buf != (void *)-1);
fprintf(stdout, "mapped buffer at 0x%p\n", buf);
/* Populate VMA */
ret = madvise(buf, TEST_MEM_SIZE, MADV_NOHUGEPAGE);
assert(ret == 0);
ret = madvise(buf, TEST_MEM_SIZE, MADV_POPULATE_READ);
assert(ret == 0);
/* Collapse VMA */
ret = madvise(buf, TEST_MEM_SIZE, MADV_HUGEPAGE);
assert(ret == 0);
ret = madvise(buf, TEST_MEM_SIZE, MADV_COLLAPSE);
if (ret) {
fprintf(stdout, "Error %d to madvise(MADV_COLLAPSE)\n", errno);
goto out;
}
/* Split xarray entry. Write permission is needed */
munmap(buf, TEST_MEM_SIZE);
buf = (void *)-1;
close(fd);
fd = open(filename, O_RDWR);
assert(fd > 0);
fallocate(fd, FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE,
TEST_MEM_SIZE - pgsize, pgsize);
out:
if (buf != (void *)-1)
munmap(buf, TEST_MEM_SIZE);
if (fd > 0)
close(fd);
return ret;
}
[root@dhcp-10-26-1-207 ~]# gcc /tmp/test.c -o /tmp/test
[root@dhcp-10-26-1-207 ~]# /tmp/test
------------[ cut here ]------------
WARNING: CPU: 25 PID: 7560 at lib/xarray.c:1025 xas_split_alloc+0xf8/0x128
Modules linked in: nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib \
nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct \
nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 \
ip_set rfkill nf_tables nfnetlink vfat fat virtio_balloon drm fuse \
xfs libcrc32c crct10dif_ce ghash_ce sha2_ce sha256_arm64 virtio_net \
sha1_ce net_failover virtio_blk virtio_console failover dimlib virtio_mmio
CPU: 25 PID: 7560 Comm: test Kdump: loaded Not tainted 6.10.0-rc7-gavin+ #9
Hardware name: QEMU KVM Virtual Machine, BIOS edk2-20240524-1.el9 05/24/2024
pstate: 83400005 (Nzcv daif +PAN -UAO +TCO +DIT -SSBS BTYPE=--)
pc : xas_split_alloc+0xf8/0x128
lr : split_huge_page_to_list_to_order+0x1c4/0x780
sp : ffff8000ac32f660
x29: ffff8000ac32f660 x28: ffff0000e0969eb0 x27: ffff8000ac32f6c0
x26: 0000000000000c40 x25: ffff0000e0969eb0 x24: 000000000000000d
x23: ffff8000ac32f6c0 x22: ffffffdfc0700000 x21: 0000000000000000
x20: 0000000000000000 x19: ffffffdfc0700000 x18: 0000000000000000
x17: 0000000000000000 x16: ffffd5f3708ffc70 x15: 0000000000000000
x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000000
x11: ffffffffffffffc0 x10: 0000000000000040 x9 : ffffd5f3708e692c
x8 : 0000000000000003 x7 : 0000000000000000 x6 : ffff0000e0969eb8
x5 : ffffd5f37289e378 x4 : 0000000000000000 x3 : 0000000000000c40
x2 : 000000000000000d x1 : 000000000000000c x0 : 0000000000000000
Call trace:
xas_split_alloc+0xf8/0x128
split_huge_page_to_list_to_order+0x1c4/0x780
truncate_inode_partial_folio+0xdc/0x160
truncate_inode_pages_range+0x1b4/0x4a8
truncate_pagecache_range+0x84/0xa
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
landlock: Don't lose track of restrictions on cred_transfer
When a process' cred struct is replaced, this _almost_ always invokes
the cred_prepare LSM hook; but in one special case (when
KEYCTL_SESSION_TO_PARENT updates the parent's credentials), the
cred_transfer LSM hook is used instead. Landlock only implements the
cred_prepare hook, not cred_transfer, so KEYCTL_SESSION_TO_PARENT causes
all information on Landlock restrictions to be lost.
This basically means that a process with the ability to use the fork()
and keyctl() syscalls can get rid of all Landlock restrictions on
itself.
Fix it by adding a cred_transfer hook that does the same thing as the
existing cred_prepare hook. (Implemented by having hook_cred_prepare()
call hook_cred_transfer() so that the two functions are less likely to
accidentally diverge in the future.) |