| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
nvme-multipath: defer partition scanning
We need to suppress the partition scan from occuring within the
controller's scan_work context. If a path error occurs here, the IO will
wait until a path becomes available or all paths are torn down, but that
action also occurs within scan_work, so it would deadlock. Defer the
partion scan to a different context that does not block scan_work. |
| In the Linux kernel, the following vulnerability has been resolved:
nvmet-fc: avoid deadlock on delete association path
When deleting an association the shutdown path is deadlocking because we
try to flush the nvmet_wq nested. Avoid this by deadlock by deferring
the put work into its own work item. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: ufs: Fix a deadlock in the error handler
The following deadlock has been observed on a test setup:
- All tags allocated
- The SCSI error handler calls ufshcd_eh_host_reset_handler()
- ufshcd_eh_host_reset_handler() queues work that calls
ufshcd_err_handler()
- ufshcd_err_handler() locks up as follows:
Workqueue: ufs_eh_wq_0 ufshcd_err_handler.cfi_jt
Call trace:
__switch_to+0x298/0x5d8
__schedule+0x6cc/0xa94
schedule+0x12c/0x298
blk_mq_get_tag+0x210/0x480
__blk_mq_alloc_request+0x1c8/0x284
blk_get_request+0x74/0x134
ufshcd_exec_dev_cmd+0x68/0x640
ufshcd_verify_dev_init+0x68/0x35c
ufshcd_probe_hba+0x12c/0x1cb8
ufshcd_host_reset_and_restore+0x88/0x254
ufshcd_reset_and_restore+0xd0/0x354
ufshcd_err_handler+0x408/0xc58
process_one_work+0x24c/0x66c
worker_thread+0x3e8/0xa4c
kthread+0x150/0x1b4
ret_from_fork+0x10/0x30
Fix this lockup by making ufshcd_exec_dev_cmd() allocate a reserved
request. |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix potential deadlock when releasing mids
All release_mid() callers seem to hold a reference of @mid so there is
no need to call kref_put(&mid->refcount, __release_mid) under
@server->mid_lock spinlock. If they don't, then an use-after-free bug
would have occurred anyways.
By getting rid of such spinlock also fixes a potential deadlock as
shown below
CPU 0 CPU 1
------------------------------------------------------------------
cifs_demultiplex_thread() cifs_debug_data_proc_show()
release_mid()
spin_lock(&server->mid_lock);
spin_lock(&cifs_tcp_ses_lock)
spin_lock(&server->mid_lock)
__release_mid()
smb2_find_smb_tcon()
spin_lock(&cifs_tcp_ses_lock) *deadlock* |
| A denial of service vulnerability was found in tipc_crypto_key_revoke in net/tipc/crypto.c in the Linux kernel’s TIPC subsystem. This flaw allows guests with local user privileges to trigger a deadlock and potentially crash the system. |
| A denial of service vulnerability due to a deadlock was found in sctp_auto_asconf_init in net/sctp/socket.c in the Linux kernel’s SCTP subsystem. This flaw allows guests with local user privileges to trigger a deadlock and potentially crash the system. |
| In the Linux kernel, the following vulnerability has been resolved:
net: phy: Don't register LEDs for genphy
If a PHY has no driver, the genphy driver is probed/removed directly in
phy_attach/detach. If the PHY's ofnode has an "leds" subnode, then the
LEDs will be (un)registered when probing/removing the genphy driver.
This could occur if the leds are for a non-generic driver that isn't
loaded for whatever reason. Synchronously removing the PHY device in
phy_detach leads to the following deadlock:
rtnl_lock()
ndo_close()
...
phy_detach()
phy_remove()
phy_leds_unregister()
led_classdev_unregister()
led_trigger_set()
netdev_trigger_deactivate()
unregister_netdevice_notifier()
rtnl_lock()
There is a corresponding deadlock on the open/register side of things
(and that one is reported by lockdep), but it requires a race while this
one is deterministic.
Generic PHYs do not support LEDs anyway, so don't bother registering
them. |
| In the Linux kernel, the following vulnerability has been resolved:
accel/ivpu: Fix deadlock in ivpu_ms_cleanup()
Fix deadlock in ivpu_ms_cleanup() by preventing runtime resume after
file_priv->ms_lock is acquired.
During a failure in runtime resume, a cold boot is executed, which
calls ivpu_ms_cleanup_all(). This function calls ivpu_ms_cleanup()
that acquires file_priv->ms_lock and causes the deadlock. |
| A security issue was discovered in the LRA Coordinator component of Narayana. When Cancel is called in LRA, an execution time of approximately 2 seconds occurs. If Join is called with the same LRA ID within that timeframe, the application may crash or hang indefinitely, leading to a denial of service. |
| In the Linux kernel, the following vulnerability has been resolved:
net: vlan: don't propagate flags on open
With the device instance lock, there is now a possibility of a deadlock:
[ 1.211455] ============================================
[ 1.211571] WARNING: possible recursive locking detected
[ 1.211687] 6.14.0-rc5-01215-g032756b4ca7a-dirty #5 Not tainted
[ 1.211823] --------------------------------------------
[ 1.211936] ip/184 is trying to acquire lock:
[ 1.212032] ffff8881024a4c30 (&dev->lock){+.+.}-{4:4}, at: dev_set_allmulti+0x4e/0xb0
[ 1.212207]
[ 1.212207] but task is already holding lock:
[ 1.212332] ffff8881024a4c30 (&dev->lock){+.+.}-{4:4}, at: dev_open+0x50/0xb0
[ 1.212487]
[ 1.212487] other info that might help us debug this:
[ 1.212626] Possible unsafe locking scenario:
[ 1.212626]
[ 1.212751] CPU0
[ 1.212815] ----
[ 1.212871] lock(&dev->lock);
[ 1.212944] lock(&dev->lock);
[ 1.213016]
[ 1.213016] *** DEADLOCK ***
[ 1.213016]
[ 1.213143] May be due to missing lock nesting notation
[ 1.213143]
[ 1.213294] 3 locks held by ip/184:
[ 1.213371] #0: ffffffff838b53e0 (rtnl_mutex){+.+.}-{4:4}, at: rtnl_nets_lock+0x1b/0xa0
[ 1.213543] #1: ffffffff84e5fc70 (&net->rtnl_mutex){+.+.}-{4:4}, at: rtnl_nets_lock+0x37/0xa0
[ 1.213727] #2: ffff8881024a4c30 (&dev->lock){+.+.}-{4:4}, at: dev_open+0x50/0xb0
[ 1.213895]
[ 1.213895] stack backtrace:
[ 1.213991] CPU: 0 UID: 0 PID: 184 Comm: ip Not tainted 6.14.0-rc5-01215-g032756b4ca7a-dirty #5
[ 1.213993] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Arch Linux 1.16.3-1-1 04/01/2014
[ 1.213994] Call Trace:
[ 1.213995] <TASK>
[ 1.213996] dump_stack_lvl+0x8e/0xd0
[ 1.214000] print_deadlock_bug+0x28b/0x2a0
[ 1.214020] lock_acquire+0xea/0x2a0
[ 1.214027] __mutex_lock+0xbf/0xd40
[ 1.214038] dev_set_allmulti+0x4e/0xb0 # real_dev->flags & IFF_ALLMULTI
[ 1.214040] vlan_dev_open+0xa5/0x170 # ndo_open on vlandev
[ 1.214042] __dev_open+0x145/0x270
[ 1.214046] __dev_change_flags+0xb0/0x1e0
[ 1.214051] netif_change_flags+0x22/0x60 # IFF_UP vlandev
[ 1.214053] dev_change_flags+0x61/0xb0 # for each device in group from dev->vlan_info
[ 1.214055] vlan_device_event+0x766/0x7c0 # on netdevsim0
[ 1.214058] notifier_call_chain+0x78/0x120
[ 1.214062] netif_open+0x6d/0x90
[ 1.214064] dev_open+0x5b/0xb0 # locks netdevsim0
[ 1.214066] bond_enslave+0x64c/0x1230
[ 1.214075] do_set_master+0x175/0x1e0 # on netdevsim0
[ 1.214077] do_setlink+0x516/0x13b0
[ 1.214094] rtnl_newlink+0xaba/0xb80
[ 1.214132] rtnetlink_rcv_msg+0x440/0x490
[ 1.214144] netlink_rcv_skb+0xeb/0x120
[ 1.214150] netlink_unicast+0x1f9/0x320
[ 1.214153] netlink_sendmsg+0x346/0x3f0
[ 1.214157] __sock_sendmsg+0x86/0xb0
[ 1.214160] ____sys_sendmsg+0x1c8/0x220
[ 1.214164] ___sys_sendmsg+0x28f/0x2d0
[ 1.214179] __x64_sys_sendmsg+0xef/0x140
[ 1.214184] do_syscall_64+0xec/0x1d0
[ 1.214190] entry_SYSCALL_64_after_hwframe+0x77/0x7f
[ 1.214191] RIP: 0033:0x7f2d1b4a7e56
Device setup:
netdevsim0 (down)
^ ^
bond netdevsim1.100@netdevsim1 allmulticast=on (down)
When we enslave the lower device (netdevsim0) which has a vlan, we
propagate vlan's allmuti/promisc flags during ndo_open. This causes
(re)locking on of the real_dev.
Propagate allmulti/promisc on flags change, not on the open. There
is a slight semantics change that vlans that are down now propagate
the flags, but this seems unlikely to result in the real issues.
Reproducer:
echo 0 1 > /sys/bus/netdevsim/new_device
dev_path=$(ls -d /sys/bus/netdevsim/devices/netdevsim0/net/*)
dev=$(echo $dev_path | rev | cut -d/ -f1 | rev)
ip link set dev $dev name netdevsim0
ip link set dev netdevsim0 up
ip link add link netdevsim0 name netdevsim0.100 type vlan id 100
ip link set dev netdevsim0.100 allm
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
PM: hibernate: Avoid deadlock in hibernate_compressor_param_set()
syzbot reported a deadlock in lock_system_sleep() (see below).
The write operation to "/sys/module/hibernate/parameters/compressor"
conflicts with the registration of ieee80211 device, resulting in a deadlock
when attempting to acquire system_transition_mutex under param_lock.
To avoid this deadlock, change hibernate_compressor_param_set() to use
mutex_trylock() for attempting to acquire system_transition_mutex and
return -EBUSY when it fails.
Task flags need not be saved or adjusted before calling
mutex_trylock(&system_transition_mutex) because the caller is not going
to end up waiting for this mutex and if it runs concurrently with system
suspend in progress, it will be frozen properly when it returns to user
space.
syzbot report:
syz-executor895/5833 is trying to acquire lock:
ffffffff8e0828c8 (system_transition_mutex){+.+.}-{4:4}, at: lock_system_sleep+0x87/0xa0 kernel/power/main.c:56
but task is already holding lock:
ffffffff8e07dc68 (param_lock){+.+.}-{4:4}, at: kernel_param_lock kernel/params.c:607 [inline]
ffffffff8e07dc68 (param_lock){+.+.}-{4:4}, at: param_attr_store+0xe6/0x300 kernel/params.c:586
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #3 (param_lock){+.+.}-{4:4}:
__mutex_lock_common kernel/locking/mutex.c:585 [inline]
__mutex_lock+0x19b/0xb10 kernel/locking/mutex.c:730
ieee80211_rate_control_ops_get net/mac80211/rate.c:220 [inline]
rate_control_alloc net/mac80211/rate.c:266 [inline]
ieee80211_init_rate_ctrl_alg+0x18d/0x6b0 net/mac80211/rate.c:1015
ieee80211_register_hw+0x20cd/0x4060 net/mac80211/main.c:1531
mac80211_hwsim_new_radio+0x304e/0x54e0 drivers/net/wireless/virtual/mac80211_hwsim.c:5558
init_mac80211_hwsim+0x432/0x8c0 drivers/net/wireless/virtual/mac80211_hwsim.c:6910
do_one_initcall+0x128/0x700 init/main.c:1257
do_initcall_level init/main.c:1319 [inline]
do_initcalls init/main.c:1335 [inline]
do_basic_setup init/main.c:1354 [inline]
kernel_init_freeable+0x5c7/0x900 init/main.c:1568
kernel_init+0x1c/0x2b0 init/main.c:1457
ret_from_fork+0x45/0x80 arch/x86/kernel/process.c:148
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
-> #2 (rtnl_mutex){+.+.}-{4:4}:
__mutex_lock_common kernel/locking/mutex.c:585 [inline]
__mutex_lock+0x19b/0xb10 kernel/locking/mutex.c:730
wg_pm_notification drivers/net/wireguard/device.c:80 [inline]
wg_pm_notification+0x49/0x180 drivers/net/wireguard/device.c:64
notifier_call_chain+0xb7/0x410 kernel/notifier.c:85
notifier_call_chain_robust kernel/notifier.c:120 [inline]
blocking_notifier_call_chain_robust kernel/notifier.c:345 [inline]
blocking_notifier_call_chain_robust+0xc9/0x170 kernel/notifier.c:333
pm_notifier_call_chain_robust+0x27/0x60 kernel/power/main.c:102
snapshot_open+0x189/0x2b0 kernel/power/user.c:77
misc_open+0x35a/0x420 drivers/char/misc.c:179
chrdev_open+0x237/0x6a0 fs/char_dev.c:414
do_dentry_open+0x735/0x1c40 fs/open.c:956
vfs_open+0x82/0x3f0 fs/open.c:1086
do_open fs/namei.c:3830 [inline]
path_openat+0x1e88/0x2d80 fs/namei.c:3989
do_filp_open+0x20c/0x470 fs/namei.c:4016
do_sys_openat2+0x17a/0x1e0 fs/open.c:1428
do_sys_open fs/open.c:1443 [inline]
__do_sys_openat fs/open.c:1459 [inline]
__se_sys_openat fs/open.c:1454 [inline]
__x64_sys_openat+0x175/0x210 fs/open.c:1454
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcd/0x250 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
-> #1 ((pm_chain_head).rwsem){++++}-{4:4}:
down_read+0x9a/0x330 kernel/locking/rwsem.c:1524
blocking_notifier_call_chain_robust kerne
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: don't set SB_RDONLY after filesystem errors
When the filesystem is mounted with errors=remount-ro, we were setting
SB_RDONLY flag to stop all filesystem modifications. We knew this misses
proper locking (sb->s_umount) and does not go through proper filesystem
remount procedure but it has been the way this worked since early ext2
days and it was good enough for catastrophic situation damage
mitigation. Recently, syzbot has found a way (see link) to trigger
warnings in filesystem freezing because the code got confused by
SB_RDONLY changing under its hands. Since these days we set
EXT4_FLAGS_SHUTDOWN on the superblock which is enough to stop all
filesystem modifications, modifying SB_RDONLY shouldn't be needed. So
stop doing that. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/iwcm: Fix WARNING:at_kernel/workqueue.c:#check_flush_dependency
In the commit aee2424246f9 ("RDMA/iwcm: Fix a use-after-free related to
destroying CM IDs"), the function flush_workqueue is invoked to flush the
work queue iwcm_wq.
But at that time, the work queue iwcm_wq was created via the function
alloc_ordered_workqueue without the flag WQ_MEM_RECLAIM.
Because the current process is trying to flush the whole iwcm_wq, if
iwcm_wq doesn't have the flag WQ_MEM_RECLAIM, verify that the current
process is not reclaiming memory or running on a workqueue which doesn't
have the flag WQ_MEM_RECLAIM as that can break forward-progress guarantee
leading to a deadlock.
The call trace is as below:
[ 125.350876][ T1430] Call Trace:
[ 125.356281][ T1430] <TASK>
[ 125.361285][ T1430] ? __warn (kernel/panic.c:693)
[ 125.367640][ T1430] ? check_flush_dependency (kernel/workqueue.c:3706 (discriminator 9))
[ 125.375689][ T1430] ? report_bug (lib/bug.c:180 lib/bug.c:219)
[ 125.382505][ T1430] ? handle_bug (arch/x86/kernel/traps.c:239)
[ 125.388987][ T1430] ? exc_invalid_op (arch/x86/kernel/traps.c:260 (discriminator 1))
[ 125.395831][ T1430] ? asm_exc_invalid_op (arch/x86/include/asm/idtentry.h:621)
[ 125.403125][ T1430] ? check_flush_dependency (kernel/workqueue.c:3706 (discriminator 9))
[ 125.410984][ T1430] ? check_flush_dependency (kernel/workqueue.c:3706 (discriminator 9))
[ 125.418764][ T1430] __flush_workqueue (kernel/workqueue.c:3970)
[ 125.426021][ T1430] ? __pfx___might_resched (kernel/sched/core.c:10151)
[ 125.433431][ T1430] ? destroy_cm_id (drivers/infiniband/core/iwcm.c:375) iw_cm
[ 125.441209][ T1430] ? __pfx___flush_workqueue (kernel/workqueue.c:3910)
[ 125.473900][ T1430] ? _raw_spin_lock_irqsave (arch/x86/include/asm/atomic.h:107 include/linux/atomic/atomic-arch-fallback.h:2170 include/linux/atomic/atomic-instrumented.h:1302 include/asm-generic/qspinlock.h:111 include/linux/spinlock.h:187 include/linux/spinlock_api_smp.h:111 kernel/locking/spinlock.c:162)
[ 125.473909][ T1430] ? __pfx__raw_spin_lock_irqsave (kernel/locking/spinlock.c:161)
[ 125.482537][ T1430] _destroy_id (drivers/infiniband/core/cma.c:2044) rdma_cm
[ 125.495072][ T1430] nvme_rdma_free_queue (drivers/nvme/host/rdma.c:656 drivers/nvme/host/rdma.c:650) nvme_rdma
[ 125.505827][ T1430] nvme_rdma_reset_ctrl_work (drivers/nvme/host/rdma.c:2180) nvme_rdma
[ 125.505831][ T1430] process_one_work (kernel/workqueue.c:3231)
[ 125.515122][ T1430] worker_thread (kernel/workqueue.c:3306 kernel/workqueue.c:3393)
[ 125.515127][ T1430] ? __pfx_worker_thread (kernel/workqueue.c:3339)
[ 125.531837][ T1430] kthread (kernel/kthread.c:389)
[ 125.539864][ T1430] ? __pfx_kthread (kernel/kthread.c:342)
[ 125.550628][ T1430] ret_from_fork (arch/x86/kernel/process.c:147)
[ 125.558840][ T1430] ? __pfx_kthread (kernel/kthread.c:342)
[ 125.558844][ T1430] ret_from_fork_asm (arch/x86/entry/entry_64.S:257)
[ 125.566487][ T1430] </TASK>
[ 125.566488][ T1430] ---[ end trace 0000000000000000 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
can: mcp251x: fix deadlock if an interrupt occurs during mcp251x_open
The mcp251x_hw_wake() function is called with the mpc_lock mutex held and
disables the interrupt handler so that no interrupts can be processed while
waking the device. If an interrupt has already occurred then waiting for
the interrupt handler to complete will deadlock because it will be trying
to acquire the same mutex.
CPU0 CPU1
---- ----
mcp251x_open()
mutex_lock(&priv->mcp_lock)
request_threaded_irq()
<interrupt>
mcp251x_can_ist()
mutex_lock(&priv->mcp_lock)
mcp251x_hw_wake()
disable_irq() <-- deadlock
Use disable_irq_nosync() instead because the interrupt handler does
everything while holding the mutex so it doesn't matter if it's still
running. |
| In the Linux kernel, the following vulnerability has been resolved:
vfs: Don't evict inode under the inode lru traversing context
The inode reclaiming process(See function prune_icache_sb) collects all
reclaimable inodes and mark them with I_FREEING flag at first, at that
time, other processes will be stuck if they try getting these inodes
(See function find_inode_fast), then the reclaiming process destroy the
inodes by function dispose_list(). Some filesystems(eg. ext4 with
ea_inode feature, ubifs with xattr) may do inode lookup in the inode
evicting callback function, if the inode lookup is operated under the
inode lru traversing context, deadlock problems may happen.
Case 1: In function ext4_evict_inode(), the ea inode lookup could happen
if ea_inode feature is enabled, the lookup process will be stuck
under the evicting context like this:
1. File A has inode i_reg and an ea inode i_ea
2. getfattr(A, xattr_buf) // i_ea is added into lru // lru->i_ea
3. Then, following three processes running like this:
PA PB
echo 2 > /proc/sys/vm/drop_caches
shrink_slab
prune_dcache_sb
// i_reg is added into lru, lru->i_ea->i_reg
prune_icache_sb
list_lru_walk_one
inode_lru_isolate
i_ea->i_state |= I_FREEING // set inode state
inode_lru_isolate
__iget(i_reg)
spin_unlock(&i_reg->i_lock)
spin_unlock(lru_lock)
rm file A
i_reg->nlink = 0
iput(i_reg) // i_reg->nlink is 0, do evict
ext4_evict_inode
ext4_xattr_delete_inode
ext4_xattr_inode_dec_ref_all
ext4_xattr_inode_iget
ext4_iget(i_ea->i_ino)
iget_locked
find_inode_fast
__wait_on_freeing_inode(i_ea) ----→ AA deadlock
dispose_list // cannot be executed by prune_icache_sb
wake_up_bit(&i_ea->i_state)
Case 2: In deleted inode writing function ubifs_jnl_write_inode(), file
deleting process holds BASEHD's wbuf->io_mutex while getting the
xattr inode, which could race with inode reclaiming process(The
reclaiming process could try locking BASEHD's wbuf->io_mutex in
inode evicting function), then an ABBA deadlock problem would
happen as following:
1. File A has inode ia and a xattr(with inode ixa), regular file B has
inode ib and a xattr.
2. getfattr(A, xattr_buf) // ixa is added into lru // lru->ixa
3. Then, following three processes running like this:
PA PB PC
echo 2 > /proc/sys/vm/drop_caches
shrink_slab
prune_dcache_sb
// ib and ia are added into lru, lru->ixa->ib->ia
prune_icache_sb
list_lru_walk_one
inode_lru_isolate
ixa->i_state |= I_FREEING // set inode state
inode_lru_isolate
__iget(ib)
spin_unlock(&ib->i_lock)
spin_unlock(lru_lock)
rm file B
ib->nlink = 0
rm file A
iput(ia)
ubifs_evict_inode(ia)
ubifs_jnl_delete_inode(ia)
ubifs_jnl_write_inode(ia)
make_reservation(BASEHD) // Lock wbuf->io_mutex
ubifs_iget(ixa->i_ino)
iget_locked
find_inode_fast
__wait_on_freeing_inode(ixa)
| iput(ib) // ib->nlink is 0, do evict
| ubifs_evict_inode
| ubifs_jnl_delete_inode(ib)
↓ ubifs_jnl_write_inode
ABBA deadlock ←-----make_reservation(BASEHD)
dispose_list // cannot be executed by prune_icache_sb
wake_up_bit(&ixa->i_state)
Fix the possible deadlock by using new inode state flag I_LRU_ISOLATING
to pin the inode in memory while inode_lru_isolate(
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
net: hns3: fix a deadlock problem when config TC during resetting
When config TC during the reset process, may cause a deadlock, the flow is
as below:
pf reset start
│
▼
......
setup tc │
│ ▼
▼ DOWN: napi_disable()
napi_disable()(skip) │
│ │
▼ ▼
...... ......
│ │
▼ │
napi_enable() │
▼
UINIT: netif_napi_del()
│
▼
......
│
▼
INIT: netif_napi_add()
│
▼
...... global reset start
│ │
▼ ▼
UP: napi_enable()(skip) ......
│ │
▼ ▼
...... napi_disable()
In reset process, the driver will DOWN the port and then UINIT, in this
case, the setup tc process will UP the port before UINIT, so cause the
problem. Adds a DOWN process in UINIT to fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/vmwgfx: Fix a deadlock in dma buf fence polling
Introduce a version of the fence ops that on release doesn't remove
the fence from the pending list, and thus doesn't require a lock to
fix poll->fence wait->fence unref deadlocks.
vmwgfx overwrites the wait callback to iterate over the list of all
fences and update their status, to do that it holds a lock to prevent
the list modifcations from other threads. The fence destroy callback
both deletes the fence and removes it from the list of pending
fences, for which it holds a lock.
dma buf polling cb unrefs a fence after it's been signaled: so the poll
calls the wait, which signals the fences, which are being destroyed.
The destruction tries to acquire the lock on the pending fences list
which it can never get because it's held by the wait from which it
was called.
Old bug, but not a lot of userspace apps were using dma-buf polling
interfaces. Fix those, in particular this fixes KDE stalls/deadlock. |
| In the Linux kernel, the following vulnerability has been resolved:
md: fix deadlock between mddev_suspend and flush bio
Deadlock occurs when mddev is being suspended while some flush bio is in
progress. It is a complex issue.
T1. the first flush is at the ending stage, it clears 'mddev->flush_bio'
and tries to submit data, but is blocked because mddev is suspended
by T4.
T2. the second flush sets 'mddev->flush_bio', and attempts to queue
md_submit_flush_data(), which is already running (T1) and won't
execute again if on the same CPU as T1.
T3. the third flush inc active_io and tries to flush, but is blocked because
'mddev->flush_bio' is not NULL (set by T2).
T4. mddev_suspend() is called and waits for active_io dec to 0 which is inc
by T3.
T1 T2 T3 T4
(flush 1) (flush 2) (third 3) (suspend)
md_submit_flush_data
mddev->flush_bio = NULL;
.
. md_flush_request
. mddev->flush_bio = bio
. queue submit_flushes
. .
. . md_handle_request
. . active_io + 1
. . md_flush_request
. . wait !mddev->flush_bio
. .
. . mddev_suspend
. . wait !active_io
. .
. submit_flushes
. queue_work md_submit_flush_data
. //md_submit_flush_data is already running (T1)
.
md_handle_request
wait resume
The root issue is non-atomic inc/dec of active_io during flush process.
active_io is dec before md_submit_flush_data is queued, and inc soon
after md_submit_flush_data() run.
md_flush_request
active_io + 1
submit_flushes
active_io - 1
md_submit_flush_data
md_handle_request
active_io + 1
make_request
active_io - 1
If active_io is dec after md_handle_request() instead of within
submit_flushes(), make_request() can be called directly intead of
md_handle_request() in md_submit_flush_data(), and active_io will
only inc and dec once in the whole flush process. Deadlock will be
fixed.
Additionally, the only difference between fixing the issue and before is
that there is no return error handling of make_request(). But after
previous patch cleaned md_write_start(), make_requst() only return error
in raid5_make_request() by dm-raid, see commit 41425f96d7aa ("dm-raid456,
md/raid456: fix a deadlock for dm-raid456 while io concurrent with
reshape)". Since dm always splits data and flush operation into two
separate io, io size of flush submitted by dm always is 0, make_request()
will not be called in md_submit_flush_data(). To prevent future
modifications from introducing issues, add WARN_ON to ensure
make_request() no error is returned in this context. |
| In the Linux kernel, the following vulnerability has been resolved:
Revert "ALSA: firewire-lib: operate for period elapse event in process context"
Commit 7ba5ca32fe6e ("ALSA: firewire-lib: operate for period elapse event
in process context") removed the process context workqueue from
amdtp_domain_stream_pcm_pointer() and update_pcm_pointers() to remove
its overhead.
With RME Fireface 800, this lead to a regression since
Kernels 5.14.0, causing an AB/BA deadlock competition for the
substream lock with eventual system freeze under ALSA operation:
thread 0:
* (lock A) acquire substream lock by
snd_pcm_stream_lock_irq() in
snd_pcm_status64()
* (lock B) wait for tasklet to finish by calling
tasklet_unlock_spin_wait() in
tasklet_disable_in_atomic() in
ohci_flush_iso_completions() of ohci.c
thread 1:
* (lock B) enter tasklet
* (lock A) attempt to acquire substream lock,
waiting for it to be released:
snd_pcm_stream_lock_irqsave() in
snd_pcm_period_elapsed() in
update_pcm_pointers() in
process_ctx_payloads() in
process_rx_packets() of amdtp-stream.c
? tasklet_unlock_spin_wait
</NMI>
<TASK>
ohci_flush_iso_completions firewire_ohci
amdtp_domain_stream_pcm_pointer snd_firewire_lib
snd_pcm_update_hw_ptr0 snd_pcm
snd_pcm_status64 snd_pcm
? native_queued_spin_lock_slowpath
</NMI>
<IRQ>
_raw_spin_lock_irqsave
snd_pcm_period_elapsed snd_pcm
process_rx_packets snd_firewire_lib
irq_target_callback snd_firewire_lib
handle_it_packet firewire_ohci
context_tasklet firewire_ohci
Restore the process context work queue to prevent deadlock
AB/BA deadlock competition for ALSA substream lock of
snd_pcm_stream_lock_irq() in snd_pcm_status64()
and snd_pcm_stream_lock_irqsave() in snd_pcm_period_elapsed().
revert commit 7ba5ca32fe6e ("ALSA: firewire-lib: operate for period
elapse event in process context")
Replace inline description to prevent future deadlock. |
| In the Linux kernel, the following vulnerability has been resolved:
pinctrl: fix deadlock in create_pinctrl() when handling -EPROBE_DEFER
In create_pinctrl(), pinctrl_maps_mutex is acquired before calling
add_setting(). If add_setting() returns -EPROBE_DEFER, create_pinctrl()
calls pinctrl_free(). However, pinctrl_free() attempts to acquire
pinctrl_maps_mutex, which is already held by create_pinctrl(), leading to
a potential deadlock.
This patch resolves the issue by releasing pinctrl_maps_mutex before
calling pinctrl_free(), preventing the deadlock.
This bug was discovered and resolved using Coverity Static Analysis
Security Testing (SAST) by Synopsys, Inc. |