| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
libnvdimm/labels: Fix divide error in nd_label_data_init()
If a faulty CXL memory device returns a broken zero LSA size in its
memory device information (Identify Memory Device (Opcode 4000h), CXL
spec. 3.1, 8.2.9.9.1.1), a divide error occurs in the libnvdimm
driver:
Oops: divide error: 0000 [#1] PREEMPT SMP NOPTI
RIP: 0010:nd_label_data_init+0x10e/0x800 [libnvdimm]
Code and flow:
1) CXL Command 4000h returns LSA size = 0
2) config_size is assigned to zero LSA size (CXL pmem driver):
drivers/cxl/pmem.c: .config_size = mds->lsa_size,
3) max_xfer is set to zero (nvdimm driver):
drivers/nvdimm/label.c: max_xfer = min_t(size_t, ndd->nsarea.max_xfer, config_size);
4) A subsequent DIV_ROUND_UP() causes a division by zero:
drivers/nvdimm/label.c: /* Make our initial read size a multiple of max_xfer size */
drivers/nvdimm/label.c: read_size = min(DIV_ROUND_UP(read_size, max_xfer) * max_xfer,
drivers/nvdimm/label.c- config_size);
Fix this by checking the config size parameter by extending an
existing check. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: renesas_usbhs: Reorder clock handling and power management in probe
Reorder the initialization sequence in `usbhs_probe()` to enable runtime
PM before accessing registers, preventing potential crashes due to
uninitialized clocks.
Currently, in the probe path, registers are accessed before enabling the
clocks, leading to a synchronous external abort on the RZ/V2H SoC.
The problematic call flow is as follows:
usbhs_probe()
usbhs_sys_clock_ctrl()
usbhs_bset()
usbhs_write()
iowrite16() <-- Register access before enabling clocks
Since `iowrite16()` is performed without ensuring the required clocks are
enabled, this can lead to access errors. To fix this, enable PM runtime
early in the probe function and ensure clocks are acquired before register
access, preventing crashes like the following on RZ/V2H:
[13.272640] Internal error: synchronous external abort: 0000000096000010 [#1] PREEMPT SMP
[13.280814] Modules linked in: cec renesas_usbhs(+) drm_kms_helper fuse drm backlight ipv6
[13.289088] CPU: 1 UID: 0 PID: 195 Comm: (udev-worker) Not tainted 6.14.0-rc7+ #98
[13.296640] Hardware name: Renesas RZ/V2H EVK Board based on r9a09g057h44 (DT)
[13.303834] pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[13.310770] pc : usbhs_bset+0x14/0x4c [renesas_usbhs]
[13.315831] lr : usbhs_probe+0x2e4/0x5ac [renesas_usbhs]
[13.321138] sp : ffff8000827e3850
[13.324438] x29: ffff8000827e3860 x28: 0000000000000000 x27: ffff8000827e3ca0
[13.331554] x26: ffff8000827e3ba0 x25: ffff800081729668 x24: 0000000000000025
[13.338670] x23: ffff0000c0f08000 x22: 0000000000000000 x21: ffff0000c0f08010
[13.345783] x20: 0000000000000000 x19: ffff0000c3b52080 x18: 00000000ffffffff
[13.352895] x17: 0000000000000000 x16: 0000000000000000 x15: ffff8000827e36ce
[13.360009] x14: 00000000000003d7 x13: 00000000000003d7 x12: 0000000000000000
[13.367122] x11: 0000000000000000 x10: 0000000000000aa0 x9 : ffff8000827e3750
[13.374235] x8 : ffff0000c1850b00 x7 : 0000000003826060 x6 : 000000000000001c
[13.381347] x5 : 000000030d5fcc00 x4 : ffff8000825c0000 x3 : 0000000000000000
[13.388459] x2 : 0000000000000400 x1 : 0000000000000000 x0 : ffff0000c3b52080
[13.395574] Call trace:
[13.398013] usbhs_bset+0x14/0x4c [renesas_usbhs] (P)
[13.403076] platform_probe+0x68/0xdc
[13.406738] really_probe+0xbc/0x2c0
[13.410306] __driver_probe_device+0x78/0x120
[13.414653] driver_probe_device+0x3c/0x154
[13.418825] __driver_attach+0x90/0x1a0
[13.422647] bus_for_each_dev+0x7c/0xe0
[13.426470] driver_attach+0x24/0x30
[13.430032] bus_add_driver+0xe4/0x208
[13.433766] driver_register+0x68/0x130
[13.437587] __platform_driver_register+0x24/0x30
[13.442273] renesas_usbhs_driver_init+0x20/0x1000 [renesas_usbhs]
[13.448450] do_one_initcall+0x60/0x1d4
[13.452276] do_init_module+0x54/0x1f8
[13.456014] load_module+0x1754/0x1c98
[13.459750] init_module_from_file+0x88/0xcc
[13.464004] __arm64_sys_finit_module+0x1c4/0x328
[13.468689] invoke_syscall+0x48/0x104
[13.472426] el0_svc_common.constprop.0+0xc0/0xe0
[13.477113] do_el0_svc+0x1c/0x28
[13.480415] el0_svc+0x30/0xcc
[13.483460] el0t_64_sync_handler+0x10c/0x138
[13.487800] el0t_64_sync+0x198/0x19c
[13.491453] Code: 2a0103e1 12003c42 12003c63 8b010084 (79400084)
[13.497522] ---[ end trace 0000000000000000 ]--- |
| Use of uninitialized resource in Windows Remote Access Connection Manager allows an authorized attacker to elevate privileges locally. |
| In the Linux kernel, the following vulnerability has been resolved:
net: ch9200: fix uninitialised access during mii_nway_restart
In mii_nway_restart() the code attempts to call
mii->mdio_read which is ch9200_mdio_read(). ch9200_mdio_read()
utilises a local buffer called "buff", which is initialised
with control_read(). However "buff" is conditionally
initialised inside control_read():
if (err == size) {
memcpy(data, buf, size);
}
If the condition of "err == size" is not met, then
"buff" remains uninitialised. Once this happens the
uninitialised "buff" is accessed and returned during
ch9200_mdio_read():
return (buff[0] | buff[1] << 8);
The problem stems from the fact that ch9200_mdio_read()
ignores the return value of control_read(), leading to
uinit-access of "buff".
To fix this we should check the return value of
control_read() and return early on error. |
| In the Linux kernel, the following vulnerability has been resolved:
ipvs: fix uninit-value for saddr in do_output_route4
syzbot reports for uninit-value for the saddr argument [1].
commit 4754957f04f5 ("ipvs: do not use random local source address for
tunnels") already implies that the input value of saddr
should be ignored but the code is still reading it which can prevent
to connect the route. Fix it by changing the argument to ret_saddr.
[1]
BUG: KMSAN: uninit-value in do_output_route4+0x42c/0x4d0 net/netfilter/ipvs/ip_vs_xmit.c:147
do_output_route4+0x42c/0x4d0 net/netfilter/ipvs/ip_vs_xmit.c:147
__ip_vs_get_out_rt+0x403/0x21d0 net/netfilter/ipvs/ip_vs_xmit.c:330
ip_vs_tunnel_xmit+0x205/0x2380 net/netfilter/ipvs/ip_vs_xmit.c:1136
ip_vs_in_hook+0x1aa5/0x35b0 net/netfilter/ipvs/ip_vs_core.c:2063
nf_hook_entry_hookfn include/linux/netfilter.h:154 [inline]
nf_hook_slow+0xf7/0x400 net/netfilter/core.c:626
nf_hook include/linux/netfilter.h:269 [inline]
__ip_local_out+0x758/0x7e0 net/ipv4/ip_output.c:118
ip_local_out net/ipv4/ip_output.c:127 [inline]
ip_send_skb+0x6a/0x3c0 net/ipv4/ip_output.c:1501
udp_send_skb+0xfda/0x1b70 net/ipv4/udp.c:1195
udp_sendmsg+0x2fe3/0x33c0 net/ipv4/udp.c:1483
inet_sendmsg+0x1fc/0x280 net/ipv4/af_inet.c:851
sock_sendmsg_nosec net/socket.c:712 [inline]
__sock_sendmsg+0x267/0x380 net/socket.c:727
____sys_sendmsg+0x91b/0xda0 net/socket.c:2566
___sys_sendmsg+0x28d/0x3c0 net/socket.c:2620
__sys_sendmmsg+0x41d/0x880 net/socket.c:2702
__compat_sys_sendmmsg net/compat.c:360 [inline]
__do_compat_sys_sendmmsg net/compat.c:367 [inline]
__se_compat_sys_sendmmsg net/compat.c:364 [inline]
__ia32_compat_sys_sendmmsg+0xc8/0x140 net/compat.c:364
ia32_sys_call+0x3ffa/0x41f0 arch/x86/include/generated/asm/syscalls_32.h:346
do_syscall_32_irqs_on arch/x86/entry/syscall_32.c:83 [inline]
__do_fast_syscall_32+0xb0/0x110 arch/x86/entry/syscall_32.c:306
do_fast_syscall_32+0x38/0x80 arch/x86/entry/syscall_32.c:331
do_SYSENTER_32+0x1f/0x30 arch/x86/entry/syscall_32.c:369
entry_SYSENTER_compat_after_hwframe+0x84/0x8e
Uninit was created at:
slab_post_alloc_hook mm/slub.c:4167 [inline]
slab_alloc_node mm/slub.c:4210 [inline]
__kmalloc_cache_noprof+0x8fa/0xe00 mm/slub.c:4367
kmalloc_noprof include/linux/slab.h:905 [inline]
ip_vs_dest_dst_alloc net/netfilter/ipvs/ip_vs_xmit.c:61 [inline]
__ip_vs_get_out_rt+0x35d/0x21d0 net/netfilter/ipvs/ip_vs_xmit.c:323
ip_vs_tunnel_xmit+0x205/0x2380 net/netfilter/ipvs/ip_vs_xmit.c:1136
ip_vs_in_hook+0x1aa5/0x35b0 net/netfilter/ipvs/ip_vs_core.c:2063
nf_hook_entry_hookfn include/linux/netfilter.h:154 [inline]
nf_hook_slow+0xf7/0x400 net/netfilter/core.c:626
nf_hook include/linux/netfilter.h:269 [inline]
__ip_local_out+0x758/0x7e0 net/ipv4/ip_output.c:118
ip_local_out net/ipv4/ip_output.c:127 [inline]
ip_send_skb+0x6a/0x3c0 net/ipv4/ip_output.c:1501
udp_send_skb+0xfda/0x1b70 net/ipv4/udp.c:1195
udp_sendmsg+0x2fe3/0x33c0 net/ipv4/udp.c:1483
inet_sendmsg+0x1fc/0x280 net/ipv4/af_inet.c:851
sock_sendmsg_nosec net/socket.c:712 [inline]
__sock_sendmsg+0x267/0x380 net/socket.c:727
____sys_sendmsg+0x91b/0xda0 net/socket.c:2566
___sys_sendmsg+0x28d/0x3c0 net/socket.c:2620
__sys_sendmmsg+0x41d/0x880 net/socket.c:2702
__compat_sys_sendmmsg net/compat.c:360 [inline]
__do_compat_sys_sendmmsg net/compat.c:367 [inline]
__se_compat_sys_sendmmsg net/compat.c:364 [inline]
__ia32_compat_sys_sendmmsg+0xc8/0x140 net/compat.c:364
ia32_sys_call+0x3ffa/0x41f0 arch/x86/include/generated/asm/syscalls_32.h:346
do_syscall_32_irqs_on arch/x86/entry/syscall_32.c:83 [inline]
__do_fast_syscall_32+0xb0/0x110 arch/x86/entry/syscall_32.c:306
do_fast_syscall_32+0x38/0x80 arch/x86/entry/syscall_32.c:331
do_SYSENTER_32+0x1f/0x30 arch/x86/entry/syscall_32.c:369
entry_SYSENTER_compat_after_hwframe+0x84/0x8e
CPU: 0 UID: 0 PID: 22408 Comm: syz.4.5165 Not tainted 6.15.0-rc3-syzkaller-00019-gbc3372351d0c #0 PREEMPT(undef)
Hardware name: Google Google Compute Engi
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: brcm80211: fmac: Add error handling for brcmf_usb_dl_writeimage()
The function brcmf_usb_dl_writeimage() calls the function
brcmf_usb_dl_cmd() but dose not check its return value. The
'state.state' and the 'state.bytes' are uninitialized if the
function brcmf_usb_dl_cmd() fails. It is dangerous to use
uninitialized variables in the conditions.
Add error handling for brcmf_usb_dl_cmd() to jump to error
handling path if the brcmf_usb_dl_cmd() fails and the
'state.state' and the 'state.bytes' are uninitialized.
Improve the error message to report more detailed error
information. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix iteration of extrefs during log replay
At __inode_add_ref() when processing extrefs, if we jump into the next
label we have an undefined value of victim_name.len, since we haven't
initialized it before we did the goto. This results in an invalid memory
access in the next iteration of the loop since victim_name.len was not
initialized to the length of the name of the current extref.
Fix this by initializing victim_name.len with the current extref's name
length. |
| A vulnerability has been identified in Simcenter Femap (All versions < V2512). The affected applications contains an uninitialized memory vulnerability while parsing specially crafted SLDPRT files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-27146) |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: kexec: initialize kexec_buf struct in load_other_segments()
Patch series "kexec: Fix invalid field access".
The kexec_buf structure was previously declared without initialization.
commit bf454ec31add ("kexec_file: allow to place kexec_buf randomly")
added a field that is always read but not consistently populated by all
architectures. This un-initialized field will contain garbage.
This is also triggering a UBSAN warning when the uninitialized data was
accessed:
------------[ cut here ]------------
UBSAN: invalid-load in ./include/linux/kexec.h:210:10
load of value 252 is not a valid value for type '_Bool'
Zero-initializing kexec_buf at declaration ensures all fields are cleanly
set, preventing future instances of uninitialized memory being used.
An initial fix was already landed for arm64[0], and this patchset fixes
the problem on the remaining arm64 code and on riscv, as raised by Mark.
Discussions about this problem could be found at[1][2].
This patch (of 3):
The kexec_buf structure was previously declared without initialization.
commit bf454ec31add ("kexec_file: allow to place kexec_buf randomly")
added a field that is always read but not consistently populated by all
architectures. This un-initialized field will contain garbage.
This is also triggering a UBSAN warning when the uninitialized data was
accessed:
------------[ cut here ]------------
UBSAN: invalid-load in ./include/linux/kexec.h:210:10
load of value 252 is not a valid value for type '_Bool'
Zero-initializing kexec_buf at declaration ensures all fields are
cleanly set, preventing future instances of uninitialized memory being
used. |
| Use of uninitialized resource in Windows Kernel allows an authorized attacker to elevate privileges locally. |
| Use of uninitialized resource in Windows Management Services allows an authorized attacker to disclose information locally. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_{ldisc,serdev}: check percpu_init_rwsem() failure
syzbot is reporting NULL pointer dereference at hci_uart_tty_close() [1],
for rcu_sync_enter() is called without rcu_sync_init() due to
hci_uart_tty_open() ignoring percpu_init_rwsem() failure.
While we are at it, fix that hci_uart_register_device() ignores
percpu_init_rwsem() failure and hci_uart_unregister_device() does not
call percpu_free_rwsem(). |
| In the Linux kernel, the following vulnerability has been resolved:
of/fdt: run soc memory setup when early_init_dt_scan_memory fails
If memory has been found early_init_dt_scan_memory now returns 1. If
it hasn't found any memory it will return 0, allowing other memory
setup mechanisms to carry on.
Previously early_init_dt_scan_memory always returned 0 without
distinguishing between any kind of memory setup being done or not. Any
code path after the early_init_dt_scan memory call in the ramips
plat_mem_setup code wouldn't be executed anymore. Making
early_init_dt_scan_memory the only way to initialize the memory.
Some boards, including my mt7621 based Cudy X6 board, depend on memory
initialization being done via the soc_info.mem_detect function
pointer. Those wouldn't be able to obtain memory and panic the kernel
during early bootup with the message "early_init_dt_alloc_memory_arch:
Failed to allocate 12416 bytes align=0x40". |
| In the Linux kernel, the following vulnerability has been resolved:
can: bcm: bcm_tx_setup(): fix KMSAN uninit-value in vfs_write
Syzkaller reported the following issue:
=====================================================
BUG: KMSAN: uninit-value in aio_rw_done fs/aio.c:1520 [inline]
BUG: KMSAN: uninit-value in aio_write+0x899/0x950 fs/aio.c:1600
aio_rw_done fs/aio.c:1520 [inline]
aio_write+0x899/0x950 fs/aio.c:1600
io_submit_one+0x1d1c/0x3bf0 fs/aio.c:2019
__do_sys_io_submit fs/aio.c:2078 [inline]
__se_sys_io_submit+0x293/0x770 fs/aio.c:2048
__x64_sys_io_submit+0x92/0xd0 fs/aio.c:2048
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Uninit was created at:
slab_post_alloc_hook mm/slab.h:766 [inline]
slab_alloc_node mm/slub.c:3452 [inline]
__kmem_cache_alloc_node+0x71f/0xce0 mm/slub.c:3491
__do_kmalloc_node mm/slab_common.c:967 [inline]
__kmalloc+0x11d/0x3b0 mm/slab_common.c:981
kmalloc_array include/linux/slab.h:636 [inline]
bcm_tx_setup+0x80e/0x29d0 net/can/bcm.c:930
bcm_sendmsg+0x3a2/0xce0 net/can/bcm.c:1351
sock_sendmsg_nosec net/socket.c:714 [inline]
sock_sendmsg net/socket.c:734 [inline]
sock_write_iter+0x495/0x5e0 net/socket.c:1108
call_write_iter include/linux/fs.h:2189 [inline]
aio_write+0x63a/0x950 fs/aio.c:1600
io_submit_one+0x1d1c/0x3bf0 fs/aio.c:2019
__do_sys_io_submit fs/aio.c:2078 [inline]
__se_sys_io_submit+0x293/0x770 fs/aio.c:2048
__x64_sys_io_submit+0x92/0xd0 fs/aio.c:2048
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
CPU: 1 PID: 5034 Comm: syz-executor350 Not tainted 6.2.0-rc6-syzkaller-80422-geda666ff2276 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/12/2023
=====================================================
We can follow the call chain and find that 'bcm_tx_setup' function
calls 'memcpy_from_msg' to copy some content to the newly allocated
frame of 'op->frames'. After that the 'len' field of copied structure
being compared with some constant value (64 or 8). However, if
'memcpy_from_msg' returns an error, we will compare some uninitialized
memory. This triggers 'uninit-value' issue.
This patch will add 'memcpy_from_msg' possible errors processing to
avoid uninit-value issue.
Tested via syzkaller |
| In the Linux kernel, the following vulnerability has been resolved:
drm/sched: Check scheduler work queue before calling timeout handling
During an IGT GPU reset test we see again oops despite of
commit 0c8c901aaaebc9 (drm/sched: Check scheduler ready before calling
timeout handling).
It uses ready condition whether to call drm_sched_fault which unwind
the TDR leads to GPU reset.
However it looks the ready condition is overloaded with other meanings,
for example, for the following stack is related GPU reset :
0 gfx_v9_0_cp_gfx_start
1 gfx_v9_0_cp_gfx_resume
2 gfx_v9_0_cp_resume
3 gfx_v9_0_hw_init
4 gfx_v9_0_resume
5 amdgpu_device_ip_resume_phase2
does the following:
/* start the ring */
gfx_v9_0_cp_gfx_start(adev);
ring->sched.ready = true;
The same approach is for other ASICs as well :
gfx_v8_0_cp_gfx_resume
gfx_v10_0_kiq_resume, etc...
As a result, our GPU reset test causes GPU fault which calls unconditionally gfx_v9_0_fault
and then drm_sched_fault. However now it depends on whether the interrupt service routine
drm_sched_fault is executed after gfx_v9_0_cp_gfx_start is completed which sets the ready
field of the scheduler to true even for uninitialized schedulers and causes oops vs
no fault or when ISR drm_sched_fault is completed prior gfx_v9_0_cp_gfx_start and
NULL pointer dereference does not occur.
Use the field timeout_wq to prevent oops for uninitialized schedulers.
The field could be initialized by the work queue of resetting the domain.
v1: Corrections to commit message (Luben) |
| The Web interface of Evolution Controller Versions 2.04.560.31.03.2024 and below does not proper sanitize user input, allowing for an unauthenticated attacker to crash the controller software |
| In the Linux kernel, the following vulnerability has been resolved:
media: v4l2-core: explicitly clear ioctl input data
As seen from a recent syzbot bug report, mistakes in the compat ioctl
implementation can lead to uninitialized kernel stack data getting used
as input for driver ioctl handlers.
The reported bug is now fixed, but it's possible that other related
bugs are still present or get added in the future. As the drivers need
to check user input already, the possible impact is fairly low, but it
might still cause an information leak.
To be on the safe side, always clear the entire ioctl buffer before
calling the conversion handler functions that are meant to initialize
them. |
| Windows TCP/IP Information Disclosure Vulnerability |
| Motoko's incremental garbage collector is impacted by an uninitialized memory access bug, caused by incorrect use of write barriers in a few locations. This vulnerability could potentially allow unauthorized read or write access to a Canister's memory. However, exploiting this bug requires the Canister to enable the incremental garbage collector or enhanced orthogonal persistence, which are non-default features in Motoko. |
| yawkat LZ4 Java provides LZ4 compression for Java. Insufficient clearing of the output buffer in Java-based decompressor implementations in lz4-java 1.10.0 and earlier allows remote attackers to read previous buffer contents via crafted compressed input. In applications where the output buffer is reused without being cleared, this may lead to disclosure of sensitive data. JNI-based implementations are not affected. This vulnerability is fixed in 1.10.1. |