In the Linux kernel, the following vulnerability has been resolved:
bpf, sockmap: Check for any of tcp_bpf_prots when cloning a listener
A listening socket linked to a sockmap has its sk_prot overridden. It
points to one of the struct proto variants in tcp_bpf_prots. The variant
depends on the socket's family and which sockmap programs are attached.
A child socket cloned from a TCP listener initially inherits their sk_prot.
But before cloning is finished, we restore the child's proto to the
listener's original non-tcp_bpf_prots one. This happens in
tcp_create_openreq_child -> tcp_bpf_clone.
Today, in tcp_bpf_clone we detect if the child's proto should be restored
by checking only for the TCP_BPF_BASE proto variant. This is not
correct. The sk_prot of listening socket linked to a sockmap can point to
to any variant in tcp_bpf_prots.
If the listeners sk_prot happens to be not the TCP_BPF_BASE variant, then
the child socket unintentionally is left if the inherited sk_prot by
tcp_bpf_clone.
This leads to issues like infinite recursion on close [1], because the
child state is otherwise not set up for use with tcp_bpf_prot operations.
Adjust the check in tcp_bpf_clone to detect all of tcp_bpf_prots variants.
Note that it wouldn't be sufficient to check the socket state when
overriding the sk_prot in tcp_bpf_update_proto in order to always use the
TCP_BPF_BASE variant for listening sockets. Since commit
b8b8315e39ff ("bpf, sockmap: Remove unhash handler for BPF sockmap usage")
it is possible for a socket to transition to TCP_LISTEN state while already
linked to a sockmap, e.g. connect() -> insert into map ->
connect(AF_UNSPEC) -> listen().
[1]: https://lore.kernel.org/all/00000000000073b14905ef2e7401@google.com/
Metrics
Affected Vendors & Products
References
History
Fri, 28 Mar 2025 13:45:00 +0000
Type | Values Removed | Values Added |
---|---|---|
References |
| |
Metrics |
threat_severity
|
cvssV3_1
|
Thu, 27 Mar 2025 17:00:00 +0000
Type | Values Removed | Values Added |
---|---|---|
Description | In the Linux kernel, the following vulnerability has been resolved: bpf, sockmap: Check for any of tcp_bpf_prots when cloning a listener A listening socket linked to a sockmap has its sk_prot overridden. It points to one of the struct proto variants in tcp_bpf_prots. The variant depends on the socket's family and which sockmap programs are attached. A child socket cloned from a TCP listener initially inherits their sk_prot. But before cloning is finished, we restore the child's proto to the listener's original non-tcp_bpf_prots one. This happens in tcp_create_openreq_child -> tcp_bpf_clone. Today, in tcp_bpf_clone we detect if the child's proto should be restored by checking only for the TCP_BPF_BASE proto variant. This is not correct. The sk_prot of listening socket linked to a sockmap can point to to any variant in tcp_bpf_prots. If the listeners sk_prot happens to be not the TCP_BPF_BASE variant, then the child socket unintentionally is left if the inherited sk_prot by tcp_bpf_clone. This leads to issues like infinite recursion on close [1], because the child state is otherwise not set up for use with tcp_bpf_prot operations. Adjust the check in tcp_bpf_clone to detect all of tcp_bpf_prots variants. Note that it wouldn't be sufficient to check the socket state when overriding the sk_prot in tcp_bpf_update_proto in order to always use the TCP_BPF_BASE variant for listening sockets. Since commit b8b8315e39ff ("bpf, sockmap: Remove unhash handler for BPF sockmap usage") it is possible for a socket to transition to TCP_LISTEN state while already linked to a sockmap, e.g. connect() -> insert into map -> connect(AF_UNSPEC) -> listen(). [1]: https://lore.kernel.org/all/00000000000073b14905ef2e7401@google.com/ | |
Title | bpf, sockmap: Check for any of tcp_bpf_prots when cloning a listener | |
References |
|

Status: PUBLISHED
Assigner: Linux
Published: 2025-03-27T16:43:23.617Z
Updated: 2025-05-04T07:46:57.942Z
Reserved: 2025-03-27T16:40:15.741Z
Link: CVE-2023-52986

No data.

Status : Awaiting Analysis
Published: 2025-03-27T17:15:45.930
Modified: 2025-03-28T18:11:49.747
Link: CVE-2023-52986
