In the Linux kernel, the following vulnerability has been resolved: riscv: mm: Fix the out of bound issue of vmemmap address In sparse vmemmap model, the virtual address of vmemmap is calculated as: ((struct page *)VMEMMAP_START - (phys_ram_base >> PAGE_SHIFT)). And the struct page's va can be calculated with an offset: (vmemmap + (pfn)). However, when initializing struct pages, kernel actually starts from the first page from the same section that phys_ram_base belongs to. If the first page's physical address is not (phys_ram_base >> PAGE_SHIFT), then we get an va below VMEMMAP_START when calculating va for it's struct page. For example, if phys_ram_base starts from 0x82000000 with pfn 0x82000, the first page in the same section is actually pfn 0x80000. During init_unavailable_range(), we will initialize struct page for pfn 0x80000 with virtual address ((struct page *)VMEMMAP_START - 0x2000), which is below VMEMMAP_START as well as PCI_IO_END. This commit fixes this bug by introducing a new variable 'vmemmap_start_pfn' which is aligned with memory section size and using it to calculate vmemmap address instead of phys_ram_base.
History

Thu, 22 May 2025 13:00:00 +0000


Wed, 22 Jan 2025 02:30:00 +0000

Type Values Removed Values Added
References
Metrics threat_severity

None

cvssV3_1

{'score': 5.5, 'vector': 'CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H'}

threat_severity

Low


Tue, 21 Jan 2025 12:30:00 +0000

Type Values Removed Values Added
Description In the Linux kernel, the following vulnerability has been resolved: riscv: mm: Fix the out of bound issue of vmemmap address In sparse vmemmap model, the virtual address of vmemmap is calculated as: ((struct page *)VMEMMAP_START - (phys_ram_base >> PAGE_SHIFT)). And the struct page's va can be calculated with an offset: (vmemmap + (pfn)). However, when initializing struct pages, kernel actually starts from the first page from the same section that phys_ram_base belongs to. If the first page's physical address is not (phys_ram_base >> PAGE_SHIFT), then we get an va below VMEMMAP_START when calculating va for it's struct page. For example, if phys_ram_base starts from 0x82000000 with pfn 0x82000, the first page in the same section is actually pfn 0x80000. During init_unavailable_range(), we will initialize struct page for pfn 0x80000 with virtual address ((struct page *)VMEMMAP_START - 0x2000), which is below VMEMMAP_START as well as PCI_IO_END. This commit fixes this bug by introducing a new variable 'vmemmap_start_pfn' which is aligned with memory section size and using it to calculate vmemmap address instead of phys_ram_base.
Title riscv: mm: Fix the out of bound issue of vmemmap address
References

cve-icon MITRE

Status: PUBLISHED

Assigner: Linux

Published: 2025-01-21T12:18:12.548Z

Updated: 2025-05-22T12:40:03.484Z

Reserved: 2025-01-19T11:50:08.380Z

Link: CVE-2024-57945

cve-icon Vulnrichment

No data.

cve-icon NVD

Status : Awaiting Analysis

Published: 2025-01-21T13:15:09.033

Modified: 2025-05-22T13:15:55.070

Link: CVE-2024-57945

cve-icon Redhat

Severity : Low

Publid Date: 2025-01-21T00:00:00Z

Links: CVE-2024-57945 - Bugzilla