In the Linux kernel, the following vulnerability has been resolved:
cnic: Fix use-after-free bugs in cnic_delete_task
The original code uses cancel_delayed_work() in cnic_cm_stop_bnx2x_hw(),
which does not guarantee that the delayed work item 'delete_task' has
fully completed if it was already running. Additionally, the delayed work
item is cyclic, the flush_workqueue() in cnic_cm_stop_bnx2x_hw() only
blocks and waits for work items that were already queued to the
workqueue prior to its invocation. Any work items submitted after
flush_workqueue() is called are not included in the set of tasks that the
flush operation awaits. This means that after the cyclic work items have
finished executing, a delayed work item may still exist in the workqueue.
This leads to use-after-free scenarios where the cnic_dev is deallocated
by cnic_free_dev(), while delete_task remains active and attempt to
dereference cnic_dev in cnic_delete_task().
A typical race condition is illustrated below:
CPU 0 (cleanup) | CPU 1 (delayed work callback)
cnic_netdev_event() |
cnic_stop_hw() | cnic_delete_task()
cnic_cm_stop_bnx2x_hw() | ...
cancel_delayed_work() | /* the queue_delayed_work()
flush_workqueue() | executes after flush_workqueue()*/
| queue_delayed_work()
cnic_free_dev(dev)//free | cnic_delete_task() //new instance
| dev = cp->dev; //use
Replace cancel_delayed_work() with cancel_delayed_work_sync() to ensure
that the cyclic delayed work item is properly canceled and that any
ongoing execution of the work item completes before the cnic_dev is
deallocated. Furthermore, since cancel_delayed_work_sync() uses
__flush_work(work, true) to synchronously wait for any currently
executing instance of the work item to finish, the flush_workqueue()
becomes redundant and should be removed.
This bug was identified through static analysis. To reproduce the issue
and validate the fix, I simulated the cnic PCI device in QEMU and
introduced intentional delays — such as inserting calls to ssleep()
within the cnic_delete_task() function — to increase the likelihood
of triggering the bug.
Metrics
Affected Vendors & Products
References
History
Sat, 04 Oct 2025 07:45:00 +0000
Type | Values Removed | Values Added |
---|---|---|
Description | In the Linux kernel, the following vulnerability has been resolved: cnic: Fix use-after-free bugs in cnic_delete_task The original code uses cancel_delayed_work() in cnic_cm_stop_bnx2x_hw(), which does not guarantee that the delayed work item 'delete_task' has fully completed if it was already running. Additionally, the delayed work item is cyclic, the flush_workqueue() in cnic_cm_stop_bnx2x_hw() only blocks and waits for work items that were already queued to the workqueue prior to its invocation. Any work items submitted after flush_workqueue() is called are not included in the set of tasks that the flush operation awaits. This means that after the cyclic work items have finished executing, a delayed work item may still exist in the workqueue. This leads to use-after-free scenarios where the cnic_dev is deallocated by cnic_free_dev(), while delete_task remains active and attempt to dereference cnic_dev in cnic_delete_task(). A typical race condition is illustrated below: CPU 0 (cleanup) | CPU 1 (delayed work callback) cnic_netdev_event() | cnic_stop_hw() | cnic_delete_task() cnic_cm_stop_bnx2x_hw() | ... cancel_delayed_work() | /* the queue_delayed_work() flush_workqueue() | executes after flush_workqueue()*/ | queue_delayed_work() cnic_free_dev(dev)//free | cnic_delete_task() //new instance | dev = cp->dev; //use Replace cancel_delayed_work() with cancel_delayed_work_sync() to ensure that the cyclic delayed work item is properly canceled and that any ongoing execution of the work item completes before the cnic_dev is deallocated. Furthermore, since cancel_delayed_work_sync() uses __flush_work(work, true) to synchronously wait for any currently executing instance of the work item to finish, the flush_workqueue() becomes redundant and should be removed. This bug was identified through static analysis. To reproduce the issue and validate the fix, I simulated the cnic PCI device in QEMU and introduced intentional delays — such as inserting calls to ssleep() within the cnic_delete_task() function — to increase the likelihood of triggering the bug. | |
Title | cnic: Fix use-after-free bugs in cnic_delete_task | |
References |
|
|

Status: PUBLISHED
Assigner: Linux
Published:
Updated: 2025-10-04T07:37:04.574Z
Reserved: 2025-04-16T07:20:57.148Z
Link: CVE-2025-39945

No data.

Status : Received
Published: 2025-10-04T08:15:47.613
Modified: 2025-10-04T08:15:47.613
Link: CVE-2025-39945

No data.

No data.