| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
nvme-multipath: fix lockdep WARN due to partition scan work
Blktests test cases nvme/014, 057 and 058 fail occasionally due to a
lockdep WARN. As reported in the Closes tag URL, the WARN indicates that
a deadlock can happen due to the dependency among disk->open_mutex,
kblockd workqueue completion and partition_scan_work completion.
To avoid the lockdep WARN and the potential deadlock, cut the dependency
by running the partition_scan_work not by kblockd workqueue but by
nvme_wq. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: udc: fix use-after-free in usb_gadget_state_work
A race condition during gadget teardown can lead to a use-after-free
in usb_gadget_state_work(), as reported by KASAN:
BUG: KASAN: invalid-access in sysfs_notify+0x2c/0xd0
Workqueue: events usb_gadget_state_work
The fundamental race occurs because a concurrent event (e.g., an
interrupt) can call usb_gadget_set_state() and schedule gadget->work
at any time during the cleanup process in usb_del_gadget().
Commit 399a45e5237c ("usb: gadget: core: flush gadget workqueue after
device removal") attempted to fix this by moving flush_work() to after
device_del(). However, this does not fully solve the race, as a new
work item can still be scheduled *after* flush_work() completes but
before the gadget's memory is freed, leading to the same use-after-free.
This patch fixes the race condition robustly by introducing a 'teardown'
flag and a 'state_lock' spinlock to the usb_gadget struct. The flag is
set during cleanup in usb_del_gadget() *before* calling flush_work() to
prevent any new work from being scheduled once cleanup has commenced.
The scheduling site, usb_gadget_set_state(), now checks this flag under
the lock before queueing the work, thus safely closing the race window. |
| In the Linux kernel, the following vulnerability has been resolved:
libceph: fix potential use-after-free in have_mon_and_osd_map()
The wait loop in __ceph_open_session() can race with the client
receiving a new monmap or osdmap shortly after the initial map is
received. Both ceph_monc_handle_map() and handle_one_map() install
a new map immediately after freeing the old one
kfree(monc->monmap);
monc->monmap = monmap;
ceph_osdmap_destroy(osdc->osdmap);
osdc->osdmap = newmap;
under client->monc.mutex and client->osdc.lock respectively, but
because neither is taken in have_mon_and_osd_map() it's possible for
client->monc.monmap->epoch and client->osdc.osdmap->epoch arms in
client->monc.monmap && client->monc.monmap->epoch &&
client->osdc.osdmap && client->osdc.osdmap->epoch;
condition to dereference an already freed map. This happens to be
reproducible with generic/395 and generic/397 with KASAN enabled:
BUG: KASAN: slab-use-after-free in have_mon_and_osd_map+0x56/0x70
Read of size 4 at addr ffff88811012d810 by task mount.ceph/13305
CPU: 2 UID: 0 PID: 13305 Comm: mount.ceph Not tainted 6.14.0-rc2-build2+ #1266
...
Call Trace:
<TASK>
have_mon_and_osd_map+0x56/0x70
ceph_open_session+0x182/0x290
ceph_get_tree+0x333/0x680
vfs_get_tree+0x49/0x180
do_new_mount+0x1a3/0x2d0
path_mount+0x6dd/0x730
do_mount+0x99/0xe0
__do_sys_mount+0x141/0x180
do_syscall_64+0x9f/0x100
entry_SYSCALL_64_after_hwframe+0x76/0x7e
</TASK>
Allocated by task 13305:
ceph_osdmap_alloc+0x16/0x130
ceph_osdc_init+0x27a/0x4c0
ceph_create_client+0x153/0x190
create_fs_client+0x50/0x2a0
ceph_get_tree+0xff/0x680
vfs_get_tree+0x49/0x180
do_new_mount+0x1a3/0x2d0
path_mount+0x6dd/0x730
do_mount+0x99/0xe0
__do_sys_mount+0x141/0x180
do_syscall_64+0x9f/0x100
entry_SYSCALL_64_after_hwframe+0x76/0x7e
Freed by task 9475:
kfree+0x212/0x290
handle_one_map+0x23c/0x3b0
ceph_osdc_handle_map+0x3c9/0x590
mon_dispatch+0x655/0x6f0
ceph_con_process_message+0xc3/0xe0
ceph_con_v1_try_read+0x614/0x760
ceph_con_workfn+0x2de/0x650
process_one_work+0x486/0x7c0
process_scheduled_works+0x73/0x90
worker_thread+0x1c8/0x2a0
kthread+0x2ec/0x300
ret_from_fork+0x24/0x40
ret_from_fork_asm+0x1a/0x30
Rewrite the wait loop to check the above condition directly with
client->monc.mutex and client->osdc.lock taken as appropriate. While
at it, improve the timeout handling (previously mount_timeout could be
exceeded in case wait_event_interruptible_timeout() slept more than
once) and access client->auth_err under client->monc.mutex to match
how it's set in finish_auth().
monmap_show() and osdmap_show() now take the respective lock before
accessing the map as well. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to detect potential corrupted nid in free_nid_list
As reported, on-disk footer.ino and footer.nid is the same and
out-of-range, let's add sanity check on f2fs_alloc_nid() to detect
any potential corruption in free_nid_list. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/plane: Fix create_in_format_blob() return value
create_in_format_blob() is either supposed to return a valid
pointer or an error, but never NULL. The caller will dereference
the blob when it is not an error, and thus will oops if NULL
returned. Return proper error values in the failure cases. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: fix gpu page fault after hibernation on PF passthrough
On PF passthrough environment, after hibernate and then resume, coralgemm
will cause gpu page fault.
Mode1 reset happens during hibernate, but partition mode is not restored
on resume, register mmCP_HYP_XCP_CTL and mmCP_PSP_XCP_CTL is not right
after resume. When CP access the MQD BO, wrong stride size is used,
this will cause out of bound access on the MQD BO, resulting page fault.
The fix is to ensure gfx_v9_4_3_switch_compute_partition() is called
when resume from a hibernation.
KFD resume is called separately during a reset recovery or resume from
suspend sequence. Hence it's not required to be called as part of
partition switch.
(cherry picked from commit 5d1b32cfe4a676fe552416cb5ae847b215463a1a) |
| In the Linux kernel, the following vulnerability has been resolved:
parisc: Avoid crash due to unaligned access in unwinder
Guenter Roeck reported this kernel crash on his emulated B160L machine:
Starting network: udhcpc: started, v1.36.1
Backtrace:
[<104320d4>] unwind_once+0x1c/0x5c
[<10434a00>] walk_stackframe.isra.0+0x74/0xb8
[<10434a6c>] arch_stack_walk+0x28/0x38
[<104e5efc>] stack_trace_save+0x48/0x5c
[<105d1bdc>] set_track_prepare+0x44/0x6c
[<105d9c80>] ___slab_alloc+0xfc4/0x1024
[<105d9d38>] __slab_alloc.isra.0+0x58/0x90
[<105dc80c>] kmem_cache_alloc_noprof+0x2ac/0x4a0
[<105b8e54>] __anon_vma_prepare+0x60/0x280
[<105a823c>] __vmf_anon_prepare+0x68/0x94
[<105a8b34>] do_wp_page+0x8cc/0xf10
[<105aad88>] handle_mm_fault+0x6c0/0xf08
[<10425568>] do_page_fault+0x110/0x440
[<10427938>] handle_interruption+0x184/0x748
[<11178398>] schedule+0x4c/0x190
BUG: spinlock recursion on CPU#0, ifconfig/2420
lock: terminate_lock.2+0x0/0x1c, .magic: dead4ead, .owner: ifconfig/2420, .owner_cpu: 0
While creating the stack trace, the unwinder uses the stack pointer to guess
the previous frame to read the previous stack pointer from memory. The crash
happens, because the unwinder tries to read from unaligned memory and as such
triggers the unalignment trap handler which then leads to the spinlock
recursion and finally to a deadlock.
Fix it by checking the alignment before accessing the memory. |
| In the Linux kernel, the following vulnerability has been resolved:
bfs: Reconstruct file type when loading from disk
syzbot is reporting that S_IFMT bits of inode->i_mode can become bogus when
the S_IFMT bits of the 32bits "mode" field loaded from disk are corrupted
or when the 32bits "attributes" field loaded from disk are corrupted.
A documentation says that BFS uses only lower 9 bits of the "mode" field.
But I can't find an explicit explanation that the unused upper 23 bits
(especially, the S_IFMT bits) are initialized with 0.
Therefore, ignore the S_IFMT bits of the "mode" field loaded from disk.
Also, verify that the value of the "attributes" field loaded from disk is
either BFS_VREG or BFS_VDIR (because BFS supports only regular files and
the root directory). |
| In the Linux kernel, the following vulnerability has been resolved:
ice: fix PTP cleanup on driver removal in error path
Improve the cleanup on releasing PTP resources in error path.
The error case might happen either at the driver probe and PTP
feature initialization or on PTP restart (errors in reset handling, NVM
update etc). In both cases, calls to PF PTP cleanup (ice_ptp_cleanup_pf
function) and 'ps_lock' mutex deinitialization were missed.
Additionally, ptp clock was not unregistered in the latter case.
Keep PTP state as 'uninitialized' on init to distinguish between error
scenarios and to avoid resource release duplication at driver removal.
The consequence of missing ice_ptp_cleanup_pf call is the following call
trace dumped when ice_adapter object is freed (port list is not empty,
as it is required at this stage):
[ T93022] ------------[ cut here ]------------
[ T93022] WARNING: CPU: 10 PID: 93022 at
ice/ice_adapter.c:67 ice_adapter_put+0xef/0x100 [ice]
...
[ T93022] RIP: 0010:ice_adapter_put+0xef/0x100 [ice]
...
[ T93022] Call Trace:
[ T93022] <TASK>
[ T93022] ? ice_adapter_put+0xef/0x100 [ice
33d2647ad4f6d866d41eefff1806df37c68aef0c]
[ T93022] ? __warn.cold+0xb0/0x10e
[ T93022] ? ice_adapter_put+0xef/0x100 [ice
33d2647ad4f6d866d41eefff1806df37c68aef0c]
[ T93022] ? report_bug+0xd8/0x150
[ T93022] ? handle_bug+0xe9/0x110
[ T93022] ? exc_invalid_op+0x17/0x70
[ T93022] ? asm_exc_invalid_op+0x1a/0x20
[ T93022] ? ice_adapter_put+0xef/0x100 [ice
33d2647ad4f6d866d41eefff1806df37c68aef0c]
[ T93022] pci_device_remove+0x42/0xb0
[ T93022] device_release_driver_internal+0x19f/0x200
[ T93022] driver_detach+0x48/0x90
[ T93022] bus_remove_driver+0x70/0xf0
[ T93022] pci_unregister_driver+0x42/0xb0
[ T93022] ice_module_exit+0x10/0xdb0 [ice
33d2647ad4f6d866d41eefff1806df37c68aef0c]
...
[ T93022] ---[ end trace 0000000000000000 ]---
[ T93022] ice: module unloaded |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: fix address removal logic in mptcp_pm_nl_rm_addr
Fix inverted WARN_ON_ONCE condition that prevented normal address
removal counter updates. The current code only executes decrement
logic when the counter is already 0 (abnormal state), while
normal removals (counter > 0) are ignored. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/tegra: Add call to put_pid()
Add a call to put_pid() corresponding to get_task_pid().
host1x_memory_context_alloc() does not take ownership of the PID so we
need to free it here to avoid leaking.
[mperttunen@nvidia.com: reword commit message] |
| In the Linux kernel, the following vulnerability has been resolved:
mm/memfd: fix information leak in hugetlb folios
When allocating hugetlb folios for memfd, three initialization steps are
missing:
1. Folios are not zeroed, leading to kernel memory disclosure to userspace
2. Folios are not marked uptodate before adding to page cache
3. hugetlb_fault_mutex is not taken before hugetlb_add_to_page_cache()
The memfd allocation path bypasses the normal page fault handler
(hugetlb_no_page) which would handle all of these initialization steps.
This is problematic especially for udmabuf use cases where folios are
pinned and directly accessed by userspace via DMA.
Fix by matching the initialization pattern used in hugetlb_no_page():
- Zero the folio using folio_zero_user() which is optimized for huge pages
- Mark it uptodate with folio_mark_uptodate()
- Take hugetlb_fault_mutex before adding to page cache to prevent races
The folio_zero_user() change also fixes a potential security issue where
uninitialized kernel memory could be disclosed to userspace through read()
or mmap() operations on the memfd. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: zstd - fix double-free in per-CPU stream cleanup
The crypto/zstd module has a double-free bug that occurs when multiple
tfms are allocated and freed.
The issue happens because zstd_streams (per-CPU contexts) are freed in
zstd_exit() during every tfm destruction, rather than being managed at
the module level. When multiple tfms exist, each tfm exit attempts to
free the same shared per-CPU streams, resulting in a double-free.
This leads to a stack trace similar to:
BUG: Bad page state in process kworker/u16:1 pfn:106fd93
page: refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x106fd93
flags: 0x17ffffc0000000(node=0|zone=2|lastcpupid=0x1fffff)
page_type: 0xffffffff()
raw: 0017ffffc0000000 dead000000000100 dead000000000122 0000000000000000
raw: 0000000000000000 0000000000000000 00000000ffffffff 0000000000000000
page dumped because: nonzero entire_mapcount
Modules linked in: ...
CPU: 3 UID: 0 PID: 2506 Comm: kworker/u16:1 Kdump: loaded Tainted: G B
Hardware name: ...
Workqueue: btrfs-delalloc btrfs_work_helper
Call Trace:
<TASK>
dump_stack_lvl+0x5d/0x80
bad_page+0x71/0xd0
free_unref_page_prepare+0x24e/0x490
free_unref_page+0x60/0x170
crypto_acomp_free_streams+0x5d/0xc0
crypto_acomp_exit_tfm+0x23/0x50
crypto_destroy_tfm+0x60/0xc0
...
Change the lifecycle management of zstd_streams to free the streams only
once during module cleanup. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Check NULL before accessing
[WHAT]
IGT kms_cursor_legacy's long-nonblocking-modeset-vs-cursor-atomic
fails with NULL pointer dereference. This can be reproduced with
both an eDP panel and a DP monitors connected.
BUG: kernel NULL pointer dereference, address: 0000000000000000
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: Oops: 0000 [#1] SMP NOPTI
CPU: 13 UID: 0 PID: 2960 Comm: kms_cursor_lega Not tainted
6.16.0-99-custom #8 PREEMPT(voluntary)
Hardware name: AMD ........
RIP: 0010:dc_stream_get_scanoutpos+0x34/0x130 [amdgpu]
Code: 57 4d 89 c7 41 56 49 89 ce 41 55 49 89 d5 41 54 49
89 fc 53 48 83 ec 18 48 8b 87 a0 64 00 00 48 89 75 d0 48 c7 c6 e0 41 30
c2 <48> 8b 38 48 8b 9f 68 06 00 00 e8 8d d7 fd ff 31 c0 48 81 c3 e0 02
RSP: 0018:ffffd0f3c2bd7608 EFLAGS: 00010292
RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffd0f3c2bd7668
RDX: ffffd0f3c2bd7664 RSI: ffffffffc23041e0 RDI: ffff8b32494b8000
RBP: ffffd0f3c2bd7648 R08: ffffd0f3c2bd766c R09: ffffd0f3c2bd7760
R10: ffffd0f3c2bd7820 R11: 0000000000000000 R12: ffff8b32494b8000
R13: ffffd0f3c2bd7664 R14: ffffd0f3c2bd7668 R15: ffffd0f3c2bd766c
FS: 000071f631b68700(0000) GS:ffff8b399f114000(0000)
knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 00000001b8105000 CR4: 0000000000f50ef0
PKRU: 55555554
Call Trace:
<TASK>
dm_crtc_get_scanoutpos+0xd7/0x180 [amdgpu]
amdgpu_display_get_crtc_scanoutpos+0x86/0x1c0 [amdgpu]
? __pfx_amdgpu_crtc_get_scanout_position+0x10/0x10[amdgpu]
amdgpu_crtc_get_scanout_position+0x27/0x50 [amdgpu]
drm_crtc_vblank_helper_get_vblank_timestamp_internal+0xf7/0x400
drm_crtc_vblank_helper_get_vblank_timestamp+0x1c/0x30
drm_crtc_get_last_vbltimestamp+0x55/0x90
drm_crtc_next_vblank_start+0x45/0xa0
drm_atomic_helper_wait_for_fences+0x81/0x1f0
...
(cherry picked from commit 621e55f1919640acab25383362b96e65f2baea3c) |
| In the Linux kernel, the following vulnerability has been resolved:
mm/mempool: fix poisoning order>0 pages with HIGHMEM
The kernel test has reported:
BUG: unable to handle page fault for address: fffba000
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
*pde = 03171067 *pte = 00000000
Oops: Oops: 0002 [#1]
CPU: 0 UID: 0 PID: 1 Comm: swapper/0 Tainted: G T 6.18.0-rc2-00031-gec7f31b2a2d3 #1 NONE a1d066dfe789f54bc7645c7989957d2bdee593ca
Tainted: [T]=RANDSTRUCT
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
EIP: memset (arch/x86/include/asm/string_32.h:168 arch/x86/lib/memcpy_32.c:17)
Code: a5 8b 4d f4 83 e1 03 74 02 f3 a4 83 c4 04 5e 5f 5d 2e e9 73 41 01 00 90 90 90 3e 8d 74 26 00 55 89 e5 57 56 89 c6 89 d0 89 f7 <f3> aa 89 f0 5e 5f 5d 2e e9 53 41 01 00 cc cc cc 55 89 e5 53 57 56
EAX: 0000006b EBX: 00000015 ECX: 001fefff EDX: 0000006b
ESI: fffb9000 EDI: fffba000 EBP: c611fbf0 ESP: c611fbe8
DS: 007b ES: 007b FS: 0000 GS: 0000 SS: 0068 EFLAGS: 00010287
CR0: 80050033 CR2: fffba000 CR3: 0316e000 CR4: 00040690
Call Trace:
poison_element (mm/mempool.c:83 mm/mempool.c:102)
mempool_init_node (mm/mempool.c:142 mm/mempool.c:226)
mempool_init_noprof (mm/mempool.c:250 (discriminator 1))
? mempool_alloc_pages (mm/mempool.c:640)
bio_integrity_initfn (block/bio-integrity.c:483 (discriminator 8))
? mempool_alloc_pages (mm/mempool.c:640)
do_one_initcall (init/main.c:1283)
Christoph found out this is due to the poisoning code not dealing
properly with CONFIG_HIGHMEM because only the first page is mapped but
then the whole potentially high-order page is accessed.
We could give up on HIGHMEM here, but it's straightforward to fix this
with a loop that's mapping, poisoning or checking and unmapping
individual pages. |
| In the Linux kernel, the following vulnerability has been resolved:
erofs: avoid infinite loops due to corrupted subpage compact indexes
Robert reported an infinite loop observed by two crafted images.
The root cause is that `clusterofs` can be larger than `lclustersize`
for !NONHEAD `lclusters` in corrupted subpage compact indexes, e.g.:
blocksize = lclustersize = 512 lcn = 6 clusterofs = 515
Move the corresponding check for full compress indexes to
`z_erofs_load_lcluster_from_disk()` to also cover subpage compact
compress indexes.
It also fixes the position of `m->type >= Z_EROFS_LCLUSTER_TYPE_MAX`
check, since it should be placed right after
`z_erofs_load_{compact,full}_lcluster()`. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_sock: Prevent race in socket write iter and sock bind
There is a potential race condition between sock bind and socket write
iter. bind may free the same cmd via mgmt_pending before write iter sends
the cmd, just as syzbot reported in UAF[1].
Here we use hci_dev_lock to synchronize the two, thereby avoiding the
UAF mentioned in [1].
[1]
syzbot reported:
BUG: KASAN: slab-use-after-free in mgmt_pending_remove+0x3b/0x210 net/bluetooth/mgmt_util.c:316
Read of size 8 at addr ffff888077164818 by task syz.0.17/5989
Call Trace:
mgmt_pending_remove+0x3b/0x210 net/bluetooth/mgmt_util.c:316
set_link_security+0x5c2/0x710 net/bluetooth/mgmt.c:1918
hci_mgmt_cmd+0x9c9/0xef0 net/bluetooth/hci_sock.c:1719
hci_sock_sendmsg+0x6ca/0xef0 net/bluetooth/hci_sock.c:1839
sock_sendmsg_nosec net/socket.c:727 [inline]
__sock_sendmsg+0x21c/0x270 net/socket.c:742
sock_write_iter+0x279/0x360 net/socket.c:1195
Allocated by task 5989:
mgmt_pending_add+0x35/0x140 net/bluetooth/mgmt_util.c:296
set_link_security+0x557/0x710 net/bluetooth/mgmt.c:1910
hci_mgmt_cmd+0x9c9/0xef0 net/bluetooth/hci_sock.c:1719
hci_sock_sendmsg+0x6ca/0xef0 net/bluetooth/hci_sock.c:1839
sock_sendmsg_nosec net/socket.c:727 [inline]
__sock_sendmsg+0x21c/0x270 net/socket.c:742
sock_write_iter+0x279/0x360 net/socket.c:1195
Freed by task 5991:
mgmt_pending_free net/bluetooth/mgmt_util.c:311 [inline]
mgmt_pending_foreach+0x30d/0x380 net/bluetooth/mgmt_util.c:257
mgmt_index_removed+0x112/0x2f0 net/bluetooth/mgmt.c:9477
hci_sock_bind+0xbe9/0x1000 net/bluetooth/hci_sock.c:1314 |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: fix memory leak in smb3_fs_context_parse_param error path
Add proper cleanup of ctx->source and fc->source to the
cifs_parse_mount_err error handler. This ensures that memory allocated
for the source strings is correctly freed on all error paths, matching
the cleanup already performed in the success path by
smb3_cleanup_fs_context_contents().
Pointers are also set to NULL after freeing to prevent potential
double-free issues.
This change fixes a memory leak originally detected by syzbot. The
leak occurred when processing Opt_source mount options if an error
happened after ctx->source and fc->source were successfully
allocated but before the function completed.
The specific leak sequence was:
1. ctx->source = smb3_fs_context_fullpath(ctx, '/') allocates memory
2. fc->source = kstrdup(ctx->source, GFP_KERNEL) allocates more memory
3. A subsequent error jumps to cifs_parse_mount_err
4. The old error handler freed passwords but not the source strings,
causing the memory to leak.
This issue was not addressed by commit e8c73eb7db0a ("cifs: client:
fix memory leak in smb3_fs_context_parse_param"), which only fixed
leaks from repeated fsconfig() calls but not this error path.
Patch updated with minor change suggested by kernel test robot |
| In the Linux kernel, the following vulnerability has been resolved:
page_pool: always add GFP_NOWARN for ATOMIC allocations
Driver authors often forget to add GFP_NOWARN for page allocation
from the datapath. This is annoying to users as OOMs are a fact
of life, and we pretty much expect network Rx to hit page allocation
failures during OOM. Make page pool add GFP_NOWARN for ATOMIC allocations
by default. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/i915: Avoid lock inversion when pinning to GGTT on CHV/BXT+VTD
On completion of i915_vma_pin_ww(), a synchronous variant of
dma_fence_work_commit() is called. When pinning a VMA to GGTT address
space on a Cherry View family processor, or on a Broxton generation SoC
with VTD enabled, i.e., when stop_machine() is then called from
intel_ggtt_bind_vma(), that can potentially lead to lock inversion among
reservation_ww and cpu_hotplug locks.
[86.861179] ======================================================
[86.861193] WARNING: possible circular locking dependency detected
[86.861209] 6.15.0-rc5-CI_DRM_16515-gca0305cadc2d+ #1 Tainted: G U
[86.861226] ------------------------------------------------------
[86.861238] i915_module_loa/1432 is trying to acquire lock:
[86.861252] ffffffff83489090 (cpu_hotplug_lock){++++}-{0:0}, at: stop_machine+0x1c/0x50
[86.861290]
but task is already holding lock:
[86.861303] ffffc90002e0b4c8 (reservation_ww_class_mutex){+.+.}-{3:3}, at: i915_vma_pin.constprop.0+0x39/0x1d0 [i915]
[86.862233]
which lock already depends on the new lock.
[86.862251]
the existing dependency chain (in reverse order) is:
[86.862265]
-> #5 (reservation_ww_class_mutex){+.+.}-{3:3}:
[86.862292] dma_resv_lockdep+0x19a/0x390
[86.862315] do_one_initcall+0x60/0x3f0
[86.862334] kernel_init_freeable+0x3cd/0x680
[86.862353] kernel_init+0x1b/0x200
[86.862369] ret_from_fork+0x47/0x70
[86.862383] ret_from_fork_asm+0x1a/0x30
[86.862399]
-> #4 (reservation_ww_class_acquire){+.+.}-{0:0}:
[86.862425] dma_resv_lockdep+0x178/0x390
[86.862440] do_one_initcall+0x60/0x3f0
[86.862454] kernel_init_freeable+0x3cd/0x680
[86.862470] kernel_init+0x1b/0x200
[86.862482] ret_from_fork+0x47/0x70
[86.862495] ret_from_fork_asm+0x1a/0x30
[86.862509]
-> #3 (&mm->mmap_lock){++++}-{3:3}:
[86.862531] down_read_killable+0x46/0x1e0
[86.862546] lock_mm_and_find_vma+0xa2/0x280
[86.862561] do_user_addr_fault+0x266/0x8e0
[86.862578] exc_page_fault+0x8a/0x2f0
[86.862593] asm_exc_page_fault+0x27/0x30
[86.862607] filldir64+0xeb/0x180
[86.862620] kernfs_fop_readdir+0x118/0x480
[86.862635] iterate_dir+0xcf/0x2b0
[86.862648] __x64_sys_getdents64+0x84/0x140
[86.862661] x64_sys_call+0x1058/0x2660
[86.862675] do_syscall_64+0x91/0xe90
[86.862689] entry_SYSCALL_64_after_hwframe+0x76/0x7e
[86.862703]
-> #2 (&root->kernfs_rwsem){++++}-{3:3}:
[86.862725] down_write+0x3e/0xf0
[86.862738] kernfs_add_one+0x30/0x3c0
[86.862751] kernfs_create_dir_ns+0x53/0xb0
[86.862765] internal_create_group+0x134/0x4c0
[86.862779] sysfs_create_group+0x13/0x20
[86.862792] topology_add_dev+0x1d/0x30
[86.862806] cpuhp_invoke_callback+0x4b5/0x850
[86.862822] cpuhp_issue_call+0xbf/0x1f0
[86.862836] __cpuhp_setup_state_cpuslocked+0x111/0x320
[86.862852] __cpuhp_setup_state+0xb0/0x220
[86.862866] topology_sysfs_init+0x30/0x50
[86.862879] do_one_initcall+0x60/0x3f0
[86.862893] kernel_init_freeable+0x3cd/0x680
[86.862908] kernel_init+0x1b/0x200
[86.862921] ret_from_fork+0x47/0x70
[86.862934] ret_from_fork_asm+0x1a/0x30
[86.862947]
-> #1 (cpuhp_state_mutex){+.+.}-{3:3}:
[86.862969] __mutex_lock+0xaa/0xed0
[86.862982] mutex_lock_nested+0x1b/0x30
[86.862995] __cpuhp_setup_state_cpuslocked+0x67/0x320
[86.863012] __cpuhp_setup_state+0xb0/0x220
[86.863026] page_alloc_init_cpuhp+0x2d/0x60
[86.863041] mm_core_init+0x22/0x2d0
[86.863054] start_kernel+0x576/0xbd0
[86.863068] x86_64_start_reservations+0x18/0x30
[86.863084] x86_64_start_kernel+0xbf/0x110
[86.863098] common_startup_64+0x13e/0x141
[86.863114]
-> #0 (cpu_hotplug_lock){++++}-{0:0}:
[86.863135] __lock_acquire+0x16
---truncated--- |