| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
bfs: Reconstruct file type when loading from disk
syzbot is reporting that S_IFMT bits of inode->i_mode can become bogus when
the S_IFMT bits of the 32bits "mode" field loaded from disk are corrupted
or when the 32bits "attributes" field loaded from disk are corrupted.
A documentation says that BFS uses only lower 9 bits of the "mode" field.
But I can't find an explicit explanation that the unused upper 23 bits
(especially, the S_IFMT bits) are initialized with 0.
Therefore, ignore the S_IFMT bits of the "mode" field loaded from disk.
Also, verify that the value of the "attributes" field loaded from disk is
either BFS_VREG or BFS_VDIR (because BFS supports only regular files and
the root directory). |
| NVIDIA Resiliency Extension for Linux contains a vulnerability in log aggregation, where an attacker could cause predictable log-file names. A successful exploit of this vulnerability may lead to escalation of privileges, code execution, denial of service, information disclosure, and data tampering. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: udc: fix use-after-free in usb_gadget_state_work
A race condition during gadget teardown can lead to a use-after-free
in usb_gadget_state_work(), as reported by KASAN:
BUG: KASAN: invalid-access in sysfs_notify+0x2c/0xd0
Workqueue: events usb_gadget_state_work
The fundamental race occurs because a concurrent event (e.g., an
interrupt) can call usb_gadget_set_state() and schedule gadget->work
at any time during the cleanup process in usb_del_gadget().
Commit 399a45e5237c ("usb: gadget: core: flush gadget workqueue after
device removal") attempted to fix this by moving flush_work() to after
device_del(). However, this does not fully solve the race, as a new
work item can still be scheduled *after* flush_work() completes but
before the gadget's memory is freed, leading to the same use-after-free.
This patch fixes the race condition robustly by introducing a 'teardown'
flag and a 'state_lock' spinlock to the usb_gadget struct. The flag is
set during cleanup in usb_del_gadget() *before* calling flush_work() to
prevent any new work from being scheduled once cleanup has commenced.
The scheduling site, usb_gadget_set_state(), now checks this flag under
the lock before queueing the work, thus safely closing the race window. |
| In the Linux kernel, the following vulnerability has been resolved:
libceph: replace BUG_ON with bounds check for map->max_osd
OSD indexes come from untrusted network packets. Boundary checks are
added to validate these against map->max_osd.
[ idryomov: drop BUG_ON in ceph_get_primary_affinity(), minor cosmetic
edits ] |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Check NULL before accessing
[WHAT]
IGT kms_cursor_legacy's long-nonblocking-modeset-vs-cursor-atomic
fails with NULL pointer dereference. This can be reproduced with
both an eDP panel and a DP monitors connected.
BUG: kernel NULL pointer dereference, address: 0000000000000000
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: Oops: 0000 [#1] SMP NOPTI
CPU: 13 UID: 0 PID: 2960 Comm: kms_cursor_lega Not tainted
6.16.0-99-custom #8 PREEMPT(voluntary)
Hardware name: AMD ........
RIP: 0010:dc_stream_get_scanoutpos+0x34/0x130 [amdgpu]
Code: 57 4d 89 c7 41 56 49 89 ce 41 55 49 89 d5 41 54 49
89 fc 53 48 83 ec 18 48 8b 87 a0 64 00 00 48 89 75 d0 48 c7 c6 e0 41 30
c2 <48> 8b 38 48 8b 9f 68 06 00 00 e8 8d d7 fd ff 31 c0 48 81 c3 e0 02
RSP: 0018:ffffd0f3c2bd7608 EFLAGS: 00010292
RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffd0f3c2bd7668
RDX: ffffd0f3c2bd7664 RSI: ffffffffc23041e0 RDI: ffff8b32494b8000
RBP: ffffd0f3c2bd7648 R08: ffffd0f3c2bd766c R09: ffffd0f3c2bd7760
R10: ffffd0f3c2bd7820 R11: 0000000000000000 R12: ffff8b32494b8000
R13: ffffd0f3c2bd7664 R14: ffffd0f3c2bd7668 R15: ffffd0f3c2bd766c
FS: 000071f631b68700(0000) GS:ffff8b399f114000(0000)
knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 00000001b8105000 CR4: 0000000000f50ef0
PKRU: 55555554
Call Trace:
<TASK>
dm_crtc_get_scanoutpos+0xd7/0x180 [amdgpu]
amdgpu_display_get_crtc_scanoutpos+0x86/0x1c0 [amdgpu]
? __pfx_amdgpu_crtc_get_scanout_position+0x10/0x10[amdgpu]
amdgpu_crtc_get_scanout_position+0x27/0x50 [amdgpu]
drm_crtc_vblank_helper_get_vblank_timestamp_internal+0xf7/0x400
drm_crtc_vblank_helper_get_vblank_timestamp+0x1c/0x30
drm_crtc_get_last_vbltimestamp+0x55/0x90
drm_crtc_next_vblank_start+0x45/0xa0
drm_atomic_helper_wait_for_fences+0x81/0x1f0
...
(cherry picked from commit 621e55f1919640acab25383362b96e65f2baea3c) |
| In the Linux kernel, the following vulnerability has been resolved:
mm/memfd: fix information leak in hugetlb folios
When allocating hugetlb folios for memfd, three initialization steps are
missing:
1. Folios are not zeroed, leading to kernel memory disclosure to userspace
2. Folios are not marked uptodate before adding to page cache
3. hugetlb_fault_mutex is not taken before hugetlb_add_to_page_cache()
The memfd allocation path bypasses the normal page fault handler
(hugetlb_no_page) which would handle all of these initialization steps.
This is problematic especially for udmabuf use cases where folios are
pinned and directly accessed by userspace via DMA.
Fix by matching the initialization pattern used in hugetlb_no_page():
- Zero the folio using folio_zero_user() which is optimized for huge pages
- Mark it uptodate with folio_mark_uptodate()
- Take hugetlb_fault_mutex before adding to page cache to prevent races
The folio_zero_user() change also fixes a potential security issue where
uninitialized kernel memory could be disclosed to userspace through read()
or mmap() operations on the memfd. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/huge_memory: fix NULL pointer deference when splitting folio
Commit c010d47f107f ("mm: thp: split huge page to any lower order pages")
introduced an early check on the folio's order via mapping->flags before
proceeding with the split work.
This check introduced a bug: for shmem folios in the swap cache and
truncated folios, the mapping pointer can be NULL. Accessing
mapping->flags in this state leads directly to a NULL pointer dereference.
This commit fixes the issue by moving the check for mapping != NULL before
any attempt to access mapping->flags. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: dwc3: Fix race condition between concurrent dwc3_remove_requests() call paths
This patch addresses a race condition caused by unsynchronized
execution of multiple call paths invoking `dwc3_remove_requests()`,
leading to premature freeing of USB requests and subsequent crashes.
Three distinct execution paths interact with `dwc3_remove_requests()`:
Path 1:
Triggered via `dwc3_gadget_reset_interrupt()` during USB reset
handling. The call stack includes:
- `dwc3_ep0_reset_state()`
- `dwc3_ep0_stall_and_restart()`
- `dwc3_ep0_out_start()`
- `dwc3_remove_requests()`
- `dwc3_gadget_del_and_unmap_request()`
Path 2:
Also initiated from `dwc3_gadget_reset_interrupt()`, but through
`dwc3_stop_active_transfers()`. The call stack includes:
- `dwc3_stop_active_transfers()`
- `dwc3_remove_requests()`
- `dwc3_gadget_del_and_unmap_request()`
Path 3:
Occurs independently during `adb root` execution, which triggers
USB function unbind and bind operations. The sequence includes:
- `gserial_disconnect()`
- `usb_ep_disable()`
- `dwc3_gadget_ep_disable()`
- `dwc3_remove_requests()` with `-ESHUTDOWN` status
Path 3 operates asynchronously and lacks synchronization with Paths
1 and 2. When Path 3 completes, it disables endpoints and frees 'out'
requests. If Paths 1 or 2 are still processing these requests,
accessing freed memory leads to a crash due to use-after-free conditions.
To fix this added check for request completion and skip processing
if already completed and added the request status for ep0 while queue. |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix memory leak in cifs_construct_tcon()
When having a multiuser mount with domain= specified and using
cifscreds, cifs_set_cifscreds() will end up setting @ctx->domainname,
so it needs to be freed before leaving cifs_construct_tcon().
This fixes the following memory leak reported by kmemleak:
mount.cifs //srv/share /mnt -o domain=ZELDA,multiuser,...
su - testuser
cifscreds add -d ZELDA -u testuser
...
ls /mnt/1
...
umount /mnt
echo scan > /sys/kernel/debug/kmemleak
cat /sys/kernel/debug/kmemleak
unreferenced object 0xffff8881203c3f08 (size 8):
comm "ls", pid 5060, jiffies 4307222943
hex dump (first 8 bytes):
5a 45 4c 44 41 00 cc cc ZELDA...
backtrace (crc d109a8cf):
__kmalloc_node_track_caller_noprof+0x572/0x710
kstrdup+0x3a/0x70
cifs_sb_tlink+0x1209/0x1770 [cifs]
cifs_get_fattr+0xe1/0xf50 [cifs]
cifs_get_inode_info+0xb5/0x240 [cifs]
cifs_revalidate_dentry_attr+0x2d1/0x470 [cifs]
cifs_getattr+0x28e/0x450 [cifs]
vfs_getattr_nosec+0x126/0x180
vfs_statx+0xf6/0x220
do_statx+0xab/0x110
__x64_sys_statx+0xd5/0x130
do_syscall_64+0xbb/0x380
entry_SYSCALL_64_after_hwframe+0x77/0x7f |
| In the Linux kernel, the following vulnerability has been resolved:
ceph: fix crash in process_v2_sparse_read() for encrypted directories
The crash in process_v2_sparse_read() for fscrypt-encrypted directories
has been reported. Issue takes place for Ceph msgr2 protocol in secure
mode. It can be reproduced by the steps:
sudo mount -t ceph :/ /mnt/cephfs/ -o name=admin,fs=cephfs,ms_mode=secure
(1) mkdir /mnt/cephfs/fscrypt-test-3
(2) cp area_decrypted.tar /mnt/cephfs/fscrypt-test-3
(3) fscrypt encrypt --source=raw_key --key=./my.key /mnt/cephfs/fscrypt-test-3
(4) fscrypt lock /mnt/cephfs/fscrypt-test-3
(5) fscrypt unlock --key=my.key /mnt/cephfs/fscrypt-test-3
(6) cat /mnt/cephfs/fscrypt-test-3/area_decrypted.tar
(7) Issue has been triggered
[ 408.072247] ------------[ cut here ]------------
[ 408.072251] WARNING: CPU: 1 PID: 392 at net/ceph/messenger_v2.c:865
ceph_con_v2_try_read+0x4b39/0x72f0
[ 408.072267] Modules linked in: intel_rapl_msr intel_rapl_common
intel_uncore_frequency_common intel_pmc_core pmt_telemetry pmt_discovery
pmt_class intel_pmc_ssram_telemetry intel_vsec kvm_intel joydev kvm irqbypass
polyval_clmulni ghash_clmulni_intel aesni_intel rapl input_leds psmouse
serio_raw i2c_piix4 vga16fb bochs vgastate i2c_smbus floppy mac_hid qemu_fw_cfg
pata_acpi sch_fq_codel rbd msr parport_pc ppdev lp parport efi_pstore
[ 408.072304] CPU: 1 UID: 0 PID: 392 Comm: kworker/1:3 Not tainted 6.17.0-rc7+
[ 408.072307] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
1.17.0-5.fc42 04/01/2014
[ 408.072310] Workqueue: ceph-msgr ceph_con_workfn
[ 408.072314] RIP: 0010:ceph_con_v2_try_read+0x4b39/0x72f0
[ 408.072317] Code: c7 c1 20 f0 d4 ae 50 31 d2 48 c7 c6 60 27 d5 ae 48 c7 c7 f8
8e 6f b0 68 60 38 d5 ae e8 00 47 61 fe 48 83 c4 18 e9 ac fc ff ff <0f> 0b e9 06
fe ff ff 4c 8b 9d 98 fd ff ff 0f 84 64 e7 ff ff 89 85
[ 408.072319] RSP: 0018:ffff88811c3e7a30 EFLAGS: 00010246
[ 408.072322] RAX: ffffed1024874c6f RBX: ffffea00042c2b40 RCX: 0000000000000f38
[ 408.072324] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
[ 408.072325] RBP: ffff88811c3e7ca8 R08: 0000000000000000 R09: 00000000000000c8
[ 408.072326] R10: 00000000000000c8 R11: 0000000000000000 R12: 00000000000000c8
[ 408.072327] R13: dffffc0000000000 R14: ffff8881243a6030 R15: 0000000000003000
[ 408.072329] FS: 0000000000000000(0000) GS:ffff88823eadf000(0000)
knlGS:0000000000000000
[ 408.072331] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 408.072332] CR2: 000000c0003c6000 CR3: 000000010c106005 CR4: 0000000000772ef0
[ 408.072336] PKRU: 55555554
[ 408.072337] Call Trace:
[ 408.072338] <TASK>
[ 408.072340] ? sched_clock_noinstr+0x9/0x10
[ 408.072344] ? __pfx_ceph_con_v2_try_read+0x10/0x10
[ 408.072347] ? _raw_spin_unlock+0xe/0x40
[ 408.072349] ? finish_task_switch.isra.0+0x15d/0x830
[ 408.072353] ? __kasan_check_write+0x14/0x30
[ 408.072357] ? mutex_lock+0x84/0xe0
[ 408.072359] ? __pfx_mutex_lock+0x10/0x10
[ 408.072361] ceph_con_workfn+0x27e/0x10e0
[ 408.072364] ? metric_delayed_work+0x311/0x2c50
[ 408.072367] process_one_work+0x611/0xe20
[ 408.072371] ? __kasan_check_write+0x14/0x30
[ 408.072373] worker_thread+0x7e3/0x1580
[ 408.072375] ? __pfx__raw_spin_lock_irqsave+0x10/0x10
[ 408.072378] ? __pfx_worker_thread+0x10/0x10
[ 408.072381] kthread+0x381/0x7a0
[ 408.072383] ? __pfx__raw_spin_lock_irq+0x10/0x10
[ 408.072385] ? __pfx_kthread+0x10/0x10
[ 408.072387] ? __kasan_check_write+0x14/0x30
[ 408.072389] ? recalc_sigpending+0x160/0x220
[ 408.072392] ? _raw_spin_unlock_irq+0xe/0x50
[ 408.072394] ? calculate_sigpending+0x78/0xb0
[ 408.072395] ? __pfx_kthread+0x10/0x10
[ 408.072397] ret_from_fork+0x2b6/0x380
[ 408.072400] ? __pfx_kthread+0x10/0x10
[ 408.072402] ret_from_fork_asm+0x1a/0x30
[ 408.072406] </TASK>
[ 408.072407] ---[ end trace 0000000000000000 ]---
[ 408.072418] Oops: general protection fault, probably for non-canonical
address 0xdffffc00000000
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
usb: storage: Fix memory leak in USB bulk transport
A kernel memory leak was identified by the 'ioctl_sg01' test from Linux
Test Project (LTP). The following bytes were mainly observed: 0x53425355.
When USB storage devices incorrectly skip the data phase with status data,
the code extracts/validates the CSW from the sg buffer, but fails to clear
it afterwards. This leaves status protocol data in srb's transfer buffer,
such as the US_BULK_CS_SIGN 'USBS' signature observed here. Thus, this can
lead to USB protocols leaks to user space through SCSI generic (/dev/sg*)
interfaces, such as the one seen here when the LTP test requested 512 KiB.
Fix the leak by zeroing the CSW data in srb's transfer buffer immediately
after the validation of devices that skip data phase.
Note: Differently from CVE-2018-1000204, which fixed a big leak by zero-
ing pages at allocation time, this leak occurs after allocation, when USB
protocol data is written to already-allocated sg pages. |
| In the Linux kernel, the following vulnerability has been resolved:
libceph: fix potential use-after-free in have_mon_and_osd_map()
The wait loop in __ceph_open_session() can race with the client
receiving a new monmap or osdmap shortly after the initial map is
received. Both ceph_monc_handle_map() and handle_one_map() install
a new map immediately after freeing the old one
kfree(monc->monmap);
monc->monmap = monmap;
ceph_osdmap_destroy(osdc->osdmap);
osdc->osdmap = newmap;
under client->monc.mutex and client->osdc.lock respectively, but
because neither is taken in have_mon_and_osd_map() it's possible for
client->monc.monmap->epoch and client->osdc.osdmap->epoch arms in
client->monc.monmap && client->monc.monmap->epoch &&
client->osdc.osdmap && client->osdc.osdmap->epoch;
condition to dereference an already freed map. This happens to be
reproducible with generic/395 and generic/397 with KASAN enabled:
BUG: KASAN: slab-use-after-free in have_mon_and_osd_map+0x56/0x70
Read of size 4 at addr ffff88811012d810 by task mount.ceph/13305
CPU: 2 UID: 0 PID: 13305 Comm: mount.ceph Not tainted 6.14.0-rc2-build2+ #1266
...
Call Trace:
<TASK>
have_mon_and_osd_map+0x56/0x70
ceph_open_session+0x182/0x290
ceph_get_tree+0x333/0x680
vfs_get_tree+0x49/0x180
do_new_mount+0x1a3/0x2d0
path_mount+0x6dd/0x730
do_mount+0x99/0xe0
__do_sys_mount+0x141/0x180
do_syscall_64+0x9f/0x100
entry_SYSCALL_64_after_hwframe+0x76/0x7e
</TASK>
Allocated by task 13305:
ceph_osdmap_alloc+0x16/0x130
ceph_osdc_init+0x27a/0x4c0
ceph_create_client+0x153/0x190
create_fs_client+0x50/0x2a0
ceph_get_tree+0xff/0x680
vfs_get_tree+0x49/0x180
do_new_mount+0x1a3/0x2d0
path_mount+0x6dd/0x730
do_mount+0x99/0xe0
__do_sys_mount+0x141/0x180
do_syscall_64+0x9f/0x100
entry_SYSCALL_64_after_hwframe+0x76/0x7e
Freed by task 9475:
kfree+0x212/0x290
handle_one_map+0x23c/0x3b0
ceph_osdc_handle_map+0x3c9/0x590
mon_dispatch+0x655/0x6f0
ceph_con_process_message+0xc3/0xe0
ceph_con_v1_try_read+0x614/0x760
ceph_con_workfn+0x2de/0x650
process_one_work+0x486/0x7c0
process_scheduled_works+0x73/0x90
worker_thread+0x1c8/0x2a0
kthread+0x2ec/0x300
ret_from_fork+0x24/0x40
ret_from_fork_asm+0x1a/0x30
Rewrite the wait loop to check the above condition directly with
client->monc.mutex and client->osdc.lock taken as appropriate. While
at it, improve the timeout handling (previously mount_timeout could be
exceeded in case wait_event_interruptible_timeout() slept more than
once) and access client->auth_err under client->monc.mutex to match
how it's set in finish_auth().
monmap_show() and osdmap_show() now take the respective lock before
accessing the map as well. |
| In the Linux kernel, the following vulnerability has been resolved:
most: usb: fix double free on late probe failure
The MOST subsystem has a non-standard registration function which frees
the interface on registration failures and on deregistration.
This unsurprisingly leads to bugs in the MOST drivers, and a couple of
recent changes turned a reference underflow and use-after-free in the
USB driver into several double free and a use-after-free on late probe
failures. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: btusb: mediatek: Avoid btusb_mtk_claim_iso_intf() NULL deref
In btusb_mtk_setup(), we set `btmtk_data->isopkt_intf` to:
usb_ifnum_to_if(data->udev, MTK_ISO_IFNUM)
That function can return NULL in some cases. Even when it returns
NULL, though, we still go on to call btusb_mtk_claim_iso_intf().
As of commit e9087e828827 ("Bluetooth: btusb: mediatek: Add locks for
usb_driver_claim_interface()"), calling btusb_mtk_claim_iso_intf()
when `btmtk_data->isopkt_intf` is NULL will cause a crash because
we'll end up passing a bad pointer to device_lock(). Prior to that
commit we'd pass the NULL pointer directly to
usb_driver_claim_interface() which would detect it and return an
error, which was handled.
Resolve the crash in btusb_mtk_claim_iso_intf() by adding a NULL check
at the start of the function. This makes the code handle a NULL
`btmtk_data->isopkt_intf` the same way it did before the problematic
commit (just with a slight change to the error message printed). |
| In the Linux kernel, the following vulnerability has been resolved:
fs/namespace: fix reference leak in grab_requested_mnt_ns
lookup_mnt_ns() already takes a reference on mnt_ns.
grab_requested_mnt_ns() doesn't need to take an extra reference. |
| In the Linux kernel, the following vulnerability has been resolved:
net: sxgbe: fix potential NULL dereference in sxgbe_rx()
Currently, when skb is null, the driver prints an error and then
dereferences skb on the next line.
To fix this, let's add a 'break' after the error message to switch
to sxgbe_rx_refill(), which is similar to the approach taken by the
other drivers in this particular case, e.g. calxeda with xgmac_rx().
Found during a code review. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_core: lookup hci_conn on RX path on protocol side
The hdev lock/lookup/unlock/use pattern in the packet RX path doesn't
ensure hci_conn* is not concurrently modified/deleted. This locking
appears to be leftover from before conn_hash started using RCU
commit bf4c63252490b ("Bluetooth: convert conn hash to RCU")
and not clear if it had purpose since then.
Currently, there are code paths that delete hci_conn* from elsewhere
than the ordered hdev->workqueue where the RX work runs in. E.g.
commit 5af1f84ed13a ("Bluetooth: hci_sync: Fix UAF on hci_abort_conn_sync")
introduced some of these, and there probably were a few others before
it. It's better to do the locking so that even if these run
concurrently no UAF is possible.
Move the lookup of hci_conn and associated socket-specific conn to
protocol recv handlers, and do them within a single critical section
to cover hci_conn* usage and lookup.
syzkaller has reported a crash that appears to be this issue:
[Task hdev->workqueue] [Task 2]
hci_disconnect_all_sync
l2cap_recv_acldata(hcon)
hci_conn_get(hcon)
hci_abort_conn_sync(hcon)
hci_dev_lock
hci_dev_lock
hci_conn_del(hcon)
v-------------------------------- hci_dev_unlock
hci_conn_put(hcon)
conn = hcon->l2cap_data (UAF) |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_sock: Prevent race in socket write iter and sock bind
There is a potential race condition between sock bind and socket write
iter. bind may free the same cmd via mgmt_pending before write iter sends
the cmd, just as syzbot reported in UAF[1].
Here we use hci_dev_lock to synchronize the two, thereby avoiding the
UAF mentioned in [1].
[1]
syzbot reported:
BUG: KASAN: slab-use-after-free in mgmt_pending_remove+0x3b/0x210 net/bluetooth/mgmt_util.c:316
Read of size 8 at addr ffff888077164818 by task syz.0.17/5989
Call Trace:
mgmt_pending_remove+0x3b/0x210 net/bluetooth/mgmt_util.c:316
set_link_security+0x5c2/0x710 net/bluetooth/mgmt.c:1918
hci_mgmt_cmd+0x9c9/0xef0 net/bluetooth/hci_sock.c:1719
hci_sock_sendmsg+0x6ca/0xef0 net/bluetooth/hci_sock.c:1839
sock_sendmsg_nosec net/socket.c:727 [inline]
__sock_sendmsg+0x21c/0x270 net/socket.c:742
sock_write_iter+0x279/0x360 net/socket.c:1195
Allocated by task 5989:
mgmt_pending_add+0x35/0x140 net/bluetooth/mgmt_util.c:296
set_link_security+0x557/0x710 net/bluetooth/mgmt.c:1910
hci_mgmt_cmd+0x9c9/0xef0 net/bluetooth/hci_sock.c:1719
hci_sock_sendmsg+0x6ca/0xef0 net/bluetooth/hci_sock.c:1839
sock_sendmsg_nosec net/socket.c:727 [inline]
__sock_sendmsg+0x21c/0x270 net/socket.c:742
sock_write_iter+0x279/0x360 net/socket.c:1195
Freed by task 5991:
mgmt_pending_free net/bluetooth/mgmt_util.c:311 [inline]
mgmt_pending_foreach+0x30d/0x380 net/bluetooth/mgmt_util.c:257
mgmt_index_removed+0x112/0x2f0 net/bluetooth/mgmt.c:9477
hci_sock_bind+0xbe9/0x1000 net/bluetooth/hci_sock.c:1314 |
| In the Linux kernel, the following vulnerability has been resolved:
can: kvaser_usb: leaf: Fix potential infinite loop in command parsers
The `kvaser_usb_leaf_wait_cmd()` and `kvaser_usb_leaf_read_bulk_callback`
functions contain logic to zero-length commands. These commands are used
to align data to the USB endpoint's wMaxPacketSize boundary.
The driver attempts to skip these placeholders by aligning the buffer
position `pos` to the next packet boundary using `round_up()` function.
However, if zero-length command is found exactly on a packet boundary
(i.e., `pos` is a multiple of wMaxPacketSize, including 0), `round_up`
function will return the unchanged value of `pos`. This prevents `pos`
to be increased, causing an infinite loop in the parsing logic.
This patch fixes this in the function by using `pos + 1` instead.
This ensures that even if `pos` is on a boundary, the calculation is
based on `pos + 1`, forcing `round_up()` to always return the next
aligned boundary. |
| In the Linux kernel, the following vulnerability has been resolved:
PCI/AER: Fix NULL pointer access by aer_info
The kzalloc(GFP_KERNEL) may return NULL, so all accesses to aer_info->xxx
will result in kernel panic. Fix it. |