| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Cross-site scripting (XSS) vulnerability in a reachable files_pdfviewer example directory in Nextcloud with versions before 22.2.10.33, 23.0.12.29, 24.0.12.28, 25.0.13.23, 26.0.13.20, 27.1.11.20, 28.0.14.11, 29.0.16.8, 30.0.17, 31.0.10, and 32.0.1 allows attackers to execute arbitrary JavaScript in the context of a user's browser via a crafted PDF file to viewer.html. This issue is related to CVE-2024-4367, but the root cause of this Nextcloud issue is that the product exposes executable example code on a same-origin basis. |
| In the Linux kernel, the following vulnerability has been resolved:
iomap: iomap: fix memory corruption when recording errors during writeback
Every now and then I see this crash on arm64:
Unable to handle kernel NULL pointer dereference at virtual address 00000000000000f8
Buffer I/O error on dev dm-0, logical block 8733687, async page read
Mem abort info:
ESR = 0x0000000096000006
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x06: level 2 translation fault
Data abort info:
ISV = 0, ISS = 0x00000006
CM = 0, WnR = 0
user pgtable: 64k pages, 42-bit VAs, pgdp=0000000139750000
[00000000000000f8] pgd=0000000000000000, p4d=0000000000000000, pud=0000000000000000, pmd=0000000000000000
Internal error: Oops: 96000006 [#1] PREEMPT SMP
Buffer I/O error on dev dm-0, logical block 8733688, async page read
Dumping ftrace buffer:
Buffer I/O error on dev dm-0, logical block 8733689, async page read
(ftrace buffer empty)
XFS (dm-0): log I/O error -5
Modules linked in: dm_thin_pool dm_persistent_data
XFS (dm-0): Metadata I/O Error (0x1) detected at xfs_trans_read_buf_map+0x1ec/0x590 [xfs] (fs/xfs/xfs_trans_buf.c:296).
dm_bio_prison
XFS (dm-0): Please unmount the filesystem and rectify the problem(s)
XFS (dm-0): xfs_imap_lookup: xfs_ialloc_read_agi() returned error -5, agno 0
dm_bufio dm_log_writes xfs nft_chain_nat xt_REDIRECT nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ip6t_REJECT
potentially unexpected fatal signal 6.
nf_reject_ipv6
potentially unexpected fatal signal 6.
ipt_REJECT nf_reject_ipv4
CPU: 1 PID: 122166 Comm: fsstress Tainted: G W 6.0.0-rc5-djwa #rc5 3004c9f1de887ebae86015f2677638ce51ee7
rpcsec_gss_krb5 auth_rpcgss xt_tcpudp ip_set_hash_ip ip_set_hash_net xt_set nft_compat ip_set_hash_mac ip_set nf_tables
Hardware name: QEMU KVM Virtual Machine, BIOS 1.5.1 06/16/2021
pstate: 60001000 (nZCv daif -PAN -UAO -TCO -DIT +SSBS BTYPE=--)
ip_tables
pc : 000003fd6d7df200
x_tables
lr : 000003fd6d7df1ec
overlay nfsv4
CPU: 0 PID: 54031 Comm: u4:3 Tainted: G W 6.0.0-rc5-djwa #rc5 3004c9f1de887ebae86015f2677638ce51ee7405
Hardware name: QEMU KVM Virtual Machine, BIOS 1.5.1 06/16/2021
Workqueue: writeback wb_workfn
sp : 000003ffd9522fd0
(flush-253:0)
pstate: 60401005 (nZCv daif +PAN -UAO -TCO -DIT +SSBS BTYPE=--)
pc : errseq_set+0x1c/0x100
x29: 000003ffd9522fd0 x28: 0000000000000023 x27: 000002acefeb6780
x26: 0000000000000005 x25: 0000000000000001 x24: 0000000000000000
x23: 00000000ffffffff x22: 0000000000000005
lr : __filemap_set_wb_err+0x24/0xe0
x21: 0000000000000006
sp : fffffe000f80f760
x29: fffffe000f80f760 x28: 0000000000000003 x27: fffffe000f80f9f8
x26: 0000000002523000 x25: 00000000fffffffb x24: fffffe000f80f868
x23: fffffe000f80fbb0 x22: fffffc0180c26a78 x21: 0000000002530000
x20: 0000000000000000 x19: 0000000000000000 x18: 0000000000000000
x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000
x14: 0000000000000001 x13: 0000000000470af3 x12: fffffc0058f70000
x11: 0000000000000040 x10: 0000000000001b20 x9 : fffffe000836b288
x8 : fffffc00eb9fd480 x7 : 0000000000f83659 x6 : 0000000000000000
x5 : 0000000000000869 x4 : 0000000000000005 x3 : 00000000000000f8
x20: 000003fd6d740020 x19: 000000000001dd36 x18: 0000000000000001
x17: 000003fd6d78704c x16: 0000000000000001 x15: 000002acfac87668
x2 : 0000000000000ffa x1 : 00000000fffffffb x0 : 00000000000000f8
Call trace:
errseq_set+0x1c/0x100
__filemap_set_wb_err+0x24/0xe0
iomap_do_writepage+0x5e4/0xd5c
write_cache_pages+0x208/0x674
iomap_writepages+0x34/0x60
xfs_vm_writepages+0x8c/0xcc [xfs 7a861f39c43631f15d3a5884246ba5035d4ca78b]
x14: 0000000000000000 x13: 2064656e72757465 x12: 0000000000002180
x11: 000003fd6d8a82d0 x10: 0000000000000000 x9 : 000003fd6d8ae288
x8 : 0000000000000083 x7 : 00000000ffffffff x6 : 00000000ffffffee
x5 : 00000000fbad2887 x4 : 000003fd6d9abb58 x3 : 000003fd6d740020
x2 : 0000000000000006 x1 : 000000000001dd36 x0 : 0000000000000000
CPU:
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: hisilicon/qm - increase the memory of local variables
Increase the buffer to prevent stack overflow by fuzz test. The maximum
length of the qos configuration buffer is 256 bytes. Currently, the value
of the 'val buffer' is only 32 bytes. The sscanf does not check the dest
memory length. So the 'val buffer' may stack overflow. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: dwc3: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.
Note, the root dentry for the debugfs directory for the device needs to
be saved so we don't have to keep looking it up, which required a bit
more refactoring to properly create and remove it when needed. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: snic: Fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic at
once. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: isp116x: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: gadget: bcm63xx_udc: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
| In the Linux kernel, the following vulnerability has been resolved:
PM: EM: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: ULPI: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
| In the Linux kernel, the following vulnerability has been resolved:
drivers: base: component: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: brcmfmac: fix use-after-free bug in brcmf_netdev_start_xmit()
> ret = brcmf_proto_tx_queue_data(drvr, ifp->ifidx, skb);
may be schedule, and then complete before the line
> ndev->stats.tx_bytes += skb->len;
[ 46.912801] ==================================================================
[ 46.920552] BUG: KASAN: use-after-free in brcmf_netdev_start_xmit+0x718/0x8c8 [brcmfmac]
[ 46.928673] Read of size 4 at addr ffffff803f5882e8 by task systemd-resolve/328
[ 46.935991]
[ 46.937514] CPU: 1 PID: 328 Comm: systemd-resolve Tainted: G O 5.4.199-[REDACTED] #1
[ 46.947255] Hardware name: [REDACTED]
[ 46.954568] Call trace:
[ 46.957037] dump_backtrace+0x0/0x2b8
[ 46.960719] show_stack+0x24/0x30
[ 46.964052] dump_stack+0x128/0x194
[ 46.967557] print_address_description.isra.0+0x64/0x380
[ 46.972877] __kasan_report+0x1d4/0x240
[ 46.976723] kasan_report+0xc/0x18
[ 46.980138] __asan_report_load4_noabort+0x18/0x20
[ 46.985027] brcmf_netdev_start_xmit+0x718/0x8c8 [brcmfmac]
[ 46.990613] dev_hard_start_xmit+0x1bc/0xda0
[ 46.994894] sch_direct_xmit+0x198/0xd08
[ 46.998827] __qdisc_run+0x37c/0x1dc0
[ 47.002500] __dev_queue_xmit+0x1528/0x21f8
[ 47.006692] dev_queue_xmit+0x24/0x30
[ 47.010366] neigh_resolve_output+0x37c/0x678
[ 47.014734] ip_finish_output2+0x598/0x2458
[ 47.018927] __ip_finish_output+0x300/0x730
[ 47.023118] ip_output+0x2e0/0x430
[ 47.026530] ip_local_out+0x90/0x140
[ 47.030117] igmpv3_sendpack+0x14c/0x228
[ 47.034049] igmpv3_send_cr+0x384/0x6b8
[ 47.037895] igmp_ifc_timer_expire+0x4c/0x118
[ 47.042262] call_timer_fn+0x1cc/0xbe8
[ 47.046021] __run_timers+0x4d8/0xb28
[ 47.049693] run_timer_softirq+0x24/0x40
[ 47.053626] __do_softirq+0x2c0/0x117c
[ 47.057387] irq_exit+0x2dc/0x388
[ 47.060715] __handle_domain_irq+0xb4/0x158
[ 47.064908] gic_handle_irq+0x58/0xb0
[ 47.068581] el0_irq_naked+0x50/0x5c
[ 47.072162]
[ 47.073665] Allocated by task 328:
[ 47.077083] save_stack+0x24/0xb0
[ 47.080410] __kasan_kmalloc.isra.0+0xc0/0xe0
[ 47.084776] kasan_slab_alloc+0x14/0x20
[ 47.088622] kmem_cache_alloc+0x15c/0x468
[ 47.092643] __alloc_skb+0xa4/0x498
[ 47.096142] igmpv3_newpack+0x158/0xd78
[ 47.099987] add_grhead+0x210/0x288
[ 47.103485] add_grec+0x6b0/0xb70
[ 47.106811] igmpv3_send_cr+0x2e0/0x6b8
[ 47.110657] igmp_ifc_timer_expire+0x4c/0x118
[ 47.115027] call_timer_fn+0x1cc/0xbe8
[ 47.118785] __run_timers+0x4d8/0xb28
[ 47.122457] run_timer_softirq+0x24/0x40
[ 47.126389] __do_softirq+0x2c0/0x117c
[ 47.130142]
[ 47.131643] Freed by task 180:
[ 47.134712] save_stack+0x24/0xb0
[ 47.138041] __kasan_slab_free+0x108/0x180
[ 47.142146] kasan_slab_free+0x10/0x18
[ 47.145904] slab_free_freelist_hook+0xa4/0x1b0
[ 47.150444] kmem_cache_free+0x8c/0x528
[ 47.154292] kfree_skbmem+0x94/0x108
[ 47.157880] consume_skb+0x10c/0x5a8
[ 47.161466] __dev_kfree_skb_any+0x88/0xa0
[ 47.165598] brcmu_pkt_buf_free_skb+0x44/0x68 [brcmutil]
[ 47.171023] brcmf_txfinalize+0xec/0x190 [brcmfmac]
[ 47.176016] brcmf_proto_bcdc_txcomplete+0x1c0/0x210 [brcmfmac]
[ 47.182056] brcmf_sdio_sendfromq+0x8dc/0x1e80 [brcmfmac]
[ 47.187568] brcmf_sdio_dpc+0xb48/0x2108 [brcmfmac]
[ 47.192529] brcmf_sdio_dataworker+0xc8/0x238 [brcmfmac]
[ 47.197859] process_one_work+0x7fc/0x1a80
[ 47.201965] worker_thread+0x31c/0xc40
[ 47.205726] kthread+0x2d8/0x370
[ 47.208967] ret_from_fork+0x10/0x18
[ 47.212546]
[ 47.214051] The buggy address belongs to the object at ffffff803f588280
[ 47.214051] which belongs to the cache skbuff_head_cache of size 208
[ 47.227086] The buggy address is located 104 bytes inside of
[ 47.227086] 208-byte region [ffffff803f588280, ffffff803f588350)
[ 47.238814] The buggy address belongs to the page:
[ 47.243618] page:ffffffff00dd6200 refcount:1 mapcou
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
trace/blktrace: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
| In the Linux kernel, the following vulnerability has been resolved:
net: If sock is dead don't access sock's sk_wq in sk_stream_wait_memory
Fixes the below NULL pointer dereference:
[...]
[ 14.471200] Call Trace:
[ 14.471562] <TASK>
[ 14.471882] lock_acquire+0x245/0x2e0
[ 14.472416] ? remove_wait_queue+0x12/0x50
[ 14.473014] ? _raw_spin_lock_irqsave+0x17/0x50
[ 14.473681] _raw_spin_lock_irqsave+0x3d/0x50
[ 14.474318] ? remove_wait_queue+0x12/0x50
[ 14.474907] remove_wait_queue+0x12/0x50
[ 14.475480] sk_stream_wait_memory+0x20d/0x340
[ 14.476127] ? do_wait_intr_irq+0x80/0x80
[ 14.476704] do_tcp_sendpages+0x287/0x600
[ 14.477283] tcp_bpf_push+0xab/0x260
[ 14.477817] tcp_bpf_sendmsg_redir+0x297/0x500
[ 14.478461] ? __local_bh_enable_ip+0x77/0xe0
[ 14.479096] tcp_bpf_send_verdict+0x105/0x470
[ 14.479729] tcp_bpf_sendmsg+0x318/0x4f0
[ 14.480311] sock_sendmsg+0x2d/0x40
[ 14.480822] ____sys_sendmsg+0x1b4/0x1c0
[ 14.481390] ? copy_msghdr_from_user+0x62/0x80
[ 14.482048] ___sys_sendmsg+0x78/0xb0
[ 14.482580] ? vmf_insert_pfn_prot+0x91/0x150
[ 14.483215] ? __do_fault+0x2a/0x1a0
[ 14.483738] ? do_fault+0x15e/0x5d0
[ 14.484246] ? __handle_mm_fault+0x56b/0x1040
[ 14.484874] ? lock_is_held_type+0xdf/0x130
[ 14.485474] ? find_held_lock+0x2d/0x90
[ 14.486046] ? __sys_sendmsg+0x41/0x70
[ 14.486587] __sys_sendmsg+0x41/0x70
[ 14.487105] ? intel_pmu_drain_pebs_core+0x350/0x350
[ 14.487822] do_syscall_64+0x34/0x80
[ 14.488345] entry_SYSCALL_64_after_hwframe+0x63/0xcd
[...]
The test scenario has the following flow:
thread1 thread2
----------- ---------------
tcp_bpf_sendmsg
tcp_bpf_send_verdict
tcp_bpf_sendmsg_redir sock_close
tcp_bpf_push_locked __sock_release
tcp_bpf_push //inet_release
do_tcp_sendpages sock->ops->release
sk_stream_wait_memory // tcp_close
sk_wait_event sk->sk_prot->close
release_sock(__sk);
***
lock_sock(sk);
__tcp_close
sock_orphan(sk)
sk->sk_wq = NULL
release_sock
****
lock_sock(__sk);
remove_wait_queue(sk_sleep(sk), &wait);
sk_sleep(sk)
//NULL pointer dereference
&rcu_dereference_raw(sk->sk_wq)->wait
While waiting for memory in thread1, the socket is released with its wait
queue because thread2 has closed it. This caused by tcp_bpf_send_verdict
didn't increase the f_count of psock->sk_redir->sk_socket->file in thread1.
We should check if SOCK_DEAD flag is set on wakeup in sk_stream_wait_memory
before accessing the wait queue. |
| In the Linux kernel, the following vulnerability has been resolved:
NFSD: Protect against send buffer overflow in NFSv2 READ
Since before the git era, NFSD has conserved the number of pages
held by each nfsd thread by combining the RPC receive and send
buffers into a single array of pages. This works because there are
no cases where an operation needs a large RPC Call message and a
large RPC Reply at the same time.
Once an RPC Call has been received, svc_process() updates
svc_rqst::rq_res to describe the part of rq_pages that can be
used for constructing the Reply. This means that the send buffer
(rq_res) shrinks when the received RPC record containing the RPC
Call is large.
A client can force this shrinkage on TCP by sending a correctly-
formed RPC Call header contained in an RPC record that is
excessively large. The full maximum payload size cannot be
constructed in that case. |
| Apache Druid’s Kerberos authenticator uses a weak fallback secret when the `druid.auth.authenticator.kerberos.cookieSignatureSecret` configuration is not explicitly set. In this case, the secret is generated using `ThreadLocalRandom`,
which is not a crypto-graphically secure random number generator. This
may allow an attacker to predict or brute force the secret used to sign
authentication cookies, potentially enabling token forgery or
authentication bypass. Additionally, each process generates its own
fallback secret, resulting in inconsistent secrets across nodes. This
causes authentication failures in distributed or multi-broker
deployments, effectively leading to a incorrectly configured clusters. Users are
advised to configure a strong `druid.auth.authenticator.kerberos.cookieSignatureSecret`
This issue affects Apache Druid: through 34.0.0.
Users are recommended to upgrade to version 35.0.0, which fixes the issue making it mandatory to set `druid.auth.authenticator.kerberos.cookieSignatureSecret` when using the Kerberos authenticator. Services will fail to come up if the secret is not set. |
| In the Linux kernel, the following vulnerability has been resolved:
xsk: Fix xsk_diag use-after-free error during socket cleanup
Fix a use-after-free error that is possible if the xsk_diag interface
is used after the socket has been unbound from the device. This can
happen either due to the socket being closed or the device
disappearing. In the early days of AF_XDP, the way we tested that a
socket was not bound to a device was to simply check if the netdevice
pointer in the xsk socket structure was NULL. Later, a better system
was introduced by having an explicit state variable in the xsk socket
struct. For example, the state of a socket that is on the way to being
closed and has been unbound from the device is XSK_UNBOUND.
The commit in the Fixes tag below deleted the old way of signalling
that a socket is unbound, setting dev to NULL. This in the belief that
all code using the old way had been exterminated. That was
unfortunately not true as the xsk diagnostics code was still using the
old way and thus does not work as intended when a socket is going
down. Fix this by introducing a test against the state variable. If
the socket is in the state XSK_UNBOUND, simply abort the diagnostic's
netlink operation. |
| File upload leading to remote code execution (RCE) in the “melis-cms-slider” module of Melis Technology's Melis Platform. This vulnerability allows an attacker to upload a malicious file via a POST request to '/melis/MelisCmsSlider/MelisCmsSliderDetails/saveDetailsForm' using the 'mcsdetail_img' parameter. |
| Vulnerability in the melis-core module of Melis Technology's Melis Platform, which, if exploited, allows an unauthenticated attacker to create an administrator account via a request to '/melis/MelisCore/ToolUser/addNewUser'. |
| SQL injection vulnerability based on the melis-cms module of the Melis platform from Melis Technology. This vulnerability allows an attacker to retrieve, create, update, and delete databases through the 'idPage' parameter in the '/melis/MelisCms/PageEdition/getTinyTemplates' endpoint. |
| In the Linux kernel, the following vulnerability has been resolved:
media: platform: mediatek: vpu: fix NULL ptr dereference
If pdev is NULL, then it is still dereferenced.
This fixes this smatch warning:
drivers/media/platform/mediatek/vpu/mtk_vpu.c:570 vpu_load_firmware() warn: address of NULL pointer 'pdev' |