| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
net: marvell: prestera: fix handling IPv4 routes with nhid
Fix handling IPv4 routes referencing a nexthop via its id by replacing
calls to fib_info_nh() with fib_info_nhc().
Trying to add an IPv4 route referencing a nextop via nhid:
$ ip link set up swp5
$ ip a a 10.0.0.1/24 dev swp5
$ ip nexthop add dev swp5 id 20 via 10.0.0.2
$ ip route add 10.0.1.0/24 nhid 20
triggers warnings when trying to handle the route:
[ 528.805763] ------------[ cut here ]------------
[ 528.810437] WARNING: CPU: 3 PID: 53 at include/net/nexthop.h:468 __prestera_fi_is_direct+0x2c/0x68 [prestera]
[ 528.820434] Modules linked in: prestera_pci act_gact act_police sch_ingress cls_u32 cls_flower prestera arm64_delta_tn48m_dn_led(O) arm64_delta_tn48m_dn_cpld(O) [last unloaded: prestera_pci]
[ 528.837485] CPU: 3 PID: 53 Comm: kworker/u8:3 Tainted: G O 6.4.5 #1
[ 528.845178] Hardware name: delta,tn48m-dn (DT)
[ 528.849641] Workqueue: prestera_ordered __prestera_router_fib_event_work [prestera]
[ 528.857352] pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 528.864347] pc : __prestera_fi_is_direct+0x2c/0x68 [prestera]
[ 528.870135] lr : prestera_k_arb_fib_evt+0xb20/0xd50 [prestera]
[ 528.876007] sp : ffff80000b20bc90
[ 528.879336] x29: ffff80000b20bc90 x28: 0000000000000000 x27: ffff0001374d3a48
[ 528.886510] x26: ffff000105604000 x25: ffff000134af8a28 x24: ffff0001374d3800
[ 528.893683] x23: ffff000101c89148 x22: ffff000101c89000 x21: ffff000101c89200
[ 528.900855] x20: ffff00013641fda0 x19: ffff800009d01088 x18: 0000000000000059
[ 528.908027] x17: 0000000000000277 x16: 0000000000000000 x15: 0000000000000000
[ 528.915198] x14: 0000000000000003 x13: 00000000000fe400 x12: 0000000000000000
[ 528.922371] x11: 0000000000000002 x10: 0000000000000aa0 x9 : ffff8000013d2020
[ 528.929543] x8 : 0000000000000018 x7 : 000000007b1703f8 x6 : 000000001ca72f86
[ 528.936715] x5 : 0000000033399ea7 x4 : 0000000000000000 x3 : ffff0001374d3acc
[ 528.943886] x2 : 0000000000000000 x1 : ffff00010200de00 x0 : ffff000134ae3f80
[ 528.951058] Call trace:
[ 528.953516] __prestera_fi_is_direct+0x2c/0x68 [prestera]
[ 528.958952] __prestera_router_fib_event_work+0x100/0x158 [prestera]
[ 528.965348] process_one_work+0x208/0x488
[ 528.969387] worker_thread+0x4c/0x430
[ 528.973068] kthread+0x120/0x138
[ 528.976313] ret_from_fork+0x10/0x20
[ 528.979909] ---[ end trace 0000000000000000 ]---
[ 528.984998] ------------[ cut here ]------------
[ 528.989645] WARNING: CPU: 3 PID: 53 at include/net/nexthop.h:468 __prestera_fi_is_direct+0x2c/0x68 [prestera]
[ 528.999628] Modules linked in: prestera_pci act_gact act_police sch_ingress cls_u32 cls_flower prestera arm64_delta_tn48m_dn_led(O) arm64_delta_tn48m_dn_cpld(O) [last unloaded: prestera_pci]
[ 529.016676] CPU: 3 PID: 53 Comm: kworker/u8:3 Tainted: G W O 6.4.5 #1
[ 529.024368] Hardware name: delta,tn48m-dn (DT)
[ 529.028830] Workqueue: prestera_ordered __prestera_router_fib_event_work [prestera]
[ 529.036539] pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 529.043533] pc : __prestera_fi_is_direct+0x2c/0x68 [prestera]
[ 529.049318] lr : __prestera_k_arb_fc_apply+0x280/0x2f8 [prestera]
[ 529.055452] sp : ffff80000b20bc60
[ 529.058781] x29: ffff80000b20bc60 x28: 0000000000000000 x27: ffff0001374d3a48
[ 529.065953] x26: ffff000105604000 x25: ffff000134af8a28 x24: ffff0001374d3800
[ 529.073126] x23: ffff000101c89148 x22: ffff000101c89148 x21: ffff00013641fda0
[ 529.080299] x20: ffff000101c89000 x19: ffff000101c89020 x18: 0000000000000059
[ 529.087471] x17: 0000000000000277 x16: 0000000000000000 x15: 0000000000000000
[ 529.094642] x14: 0000000000000003 x13: 00000000000fe400 x12: 0000000000000000
[ 529.101814] x11: 0000000000000002 x10: 0000000000000aa0 x9 : ffff8000013cee80
[ 529.108985] x8 : 0000000000000018 x7 : 000000007b1703f8 x6
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
icmp6: Fix null-ptr-deref of ip6_null_entry->rt6i_idev in icmp6_dev().
With some IPv6 Ext Hdr (RPL, SRv6, etc.), we can send a packet that
has the link-local address as src and dst IP and will be forwarded to
an external IP in the IPv6 Ext Hdr.
For example, the script below generates a packet whose src IP is the
link-local address and dst is updated to 11::.
# for f in $(find /proc/sys/net/ -name *seg6_enabled*); do echo 1 > $f; done
# python3
>>> from socket import *
>>> from scapy.all import *
>>>
>>> SRC_ADDR = DST_ADDR = "fe80::5054:ff:fe12:3456"
>>>
>>> pkt = IPv6(src=SRC_ADDR, dst=DST_ADDR)
>>> pkt /= IPv6ExtHdrSegmentRouting(type=4, addresses=["11::", "22::"], segleft=1)
>>>
>>> sk = socket(AF_INET6, SOCK_RAW, IPPROTO_RAW)
>>> sk.sendto(bytes(pkt), (DST_ADDR, 0))
For such a packet, we call ip6_route_input() to look up a route for the
next destination in these three functions depending on the header type.
* ipv6_rthdr_rcv()
* ipv6_rpl_srh_rcv()
* ipv6_srh_rcv()
If no route is found, ip6_null_entry is set to skb, and the following
dst_input(skb) calls ip6_pkt_drop().
Finally, in icmp6_dev(), we dereference skb_rt6_info(skb)->rt6i_idev->dev
as the input device is the loopback interface. Then, we have to check if
skb_rt6_info(skb)->rt6i_idev is NULL or not to avoid NULL pointer deref
for ip6_null_entry.
BUG: kernel NULL pointer dereference, address: 0000000000000000
PF: supervisor read access in kernel mode
PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP PTI
CPU: 0 PID: 157 Comm: python3 Not tainted 6.4.0-11996-gb121d614371c #35
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
RIP: 0010:icmp6_send (net/ipv6/icmp.c:436 net/ipv6/icmp.c:503)
Code: fe ff ff 48 c7 40 30 c0 86 5d 83 e8 c6 44 1c 00 e9 c8 fc ff ff 49 8b 46 58 48 83 e0 fe 0f 84 4a fb ff ff 48 8b 80 d0 00 00 00 <48> 8b 00 44 8b 88 e0 00 00 00 e9 34 fb ff ff 4d 85 ed 0f 85 69 01
RSP: 0018:ffffc90000003c70 EFLAGS: 00000286
RAX: 0000000000000000 RBX: 0000000000000001 RCX: 00000000000000e0
RDX: 0000000000000021 RSI: 0000000000000000 RDI: ffff888006d72a18
RBP: ffffc90000003d80 R08: 0000000000000000 R09: 0000000000000001
R10: ffffc90000003d98 R11: 0000000000000040 R12: ffff888006d72a10
R13: 0000000000000000 R14: ffff8880057fb800 R15: ffffffff835d86c0
FS: 00007f9dc72ee740(0000) GS:ffff88807dc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 00000000057b2000 CR4: 00000000007506f0
PKRU: 55555554
Call Trace:
<IRQ>
ip6_pkt_drop (net/ipv6/route.c:4513)
ipv6_rthdr_rcv (net/ipv6/exthdrs.c:640 net/ipv6/exthdrs.c:686)
ip6_protocol_deliver_rcu (net/ipv6/ip6_input.c:437 (discriminator 5))
ip6_input_finish (./include/linux/rcupdate.h:781 net/ipv6/ip6_input.c:483)
__netif_receive_skb_one_core (net/core/dev.c:5455)
process_backlog (./include/linux/rcupdate.h:781 net/core/dev.c:5895)
__napi_poll (net/core/dev.c:6460)
net_rx_action (net/core/dev.c:6529 net/core/dev.c:6660)
__do_softirq (./arch/x86/include/asm/jump_label.h:27 ./include/linux/jump_label.h:207 ./include/trace/events/irq.h:142 kernel/softirq.c:554)
do_softirq (kernel/softirq.c:454 kernel/softirq.c:441)
</IRQ>
<TASK>
__local_bh_enable_ip (kernel/softirq.c:381)
__dev_queue_xmit (net/core/dev.c:4231)
ip6_finish_output2 (./include/net/neighbour.h:544 net/ipv6/ip6_output.c:135)
rawv6_sendmsg (./include/net/dst.h:458 ./include/linux/netfilter.h:303 net/ipv6/raw.c:656 net/ipv6/raw.c:914)
sock_sendmsg (net/socket.c:725 net/socket.c:748)
__sys_sendto (net/socket.c:2134)
__x64_sys_sendto (net/socket.c:2146 net/socket.c:2142 net/socket.c:2142)
do_syscall_64 (arch/x86/entry/common.c:50 arch/x86/entry/common.c:80)
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:120)
RIP: 0033:0x7f9dc751baea
Code: d8 64 89 02 48 c7 c0 ff f
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
can: bcm: bcm_tx_setup(): fix KMSAN uninit-value in vfs_write
Syzkaller reported the following issue:
=====================================================
BUG: KMSAN: uninit-value in aio_rw_done fs/aio.c:1520 [inline]
BUG: KMSAN: uninit-value in aio_write+0x899/0x950 fs/aio.c:1600
aio_rw_done fs/aio.c:1520 [inline]
aio_write+0x899/0x950 fs/aio.c:1600
io_submit_one+0x1d1c/0x3bf0 fs/aio.c:2019
__do_sys_io_submit fs/aio.c:2078 [inline]
__se_sys_io_submit+0x293/0x770 fs/aio.c:2048
__x64_sys_io_submit+0x92/0xd0 fs/aio.c:2048
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Uninit was created at:
slab_post_alloc_hook mm/slab.h:766 [inline]
slab_alloc_node mm/slub.c:3452 [inline]
__kmem_cache_alloc_node+0x71f/0xce0 mm/slub.c:3491
__do_kmalloc_node mm/slab_common.c:967 [inline]
__kmalloc+0x11d/0x3b0 mm/slab_common.c:981
kmalloc_array include/linux/slab.h:636 [inline]
bcm_tx_setup+0x80e/0x29d0 net/can/bcm.c:930
bcm_sendmsg+0x3a2/0xce0 net/can/bcm.c:1351
sock_sendmsg_nosec net/socket.c:714 [inline]
sock_sendmsg net/socket.c:734 [inline]
sock_write_iter+0x495/0x5e0 net/socket.c:1108
call_write_iter include/linux/fs.h:2189 [inline]
aio_write+0x63a/0x950 fs/aio.c:1600
io_submit_one+0x1d1c/0x3bf0 fs/aio.c:2019
__do_sys_io_submit fs/aio.c:2078 [inline]
__se_sys_io_submit+0x293/0x770 fs/aio.c:2048
__x64_sys_io_submit+0x92/0xd0 fs/aio.c:2048
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
CPU: 1 PID: 5034 Comm: syz-executor350 Not tainted 6.2.0-rc6-syzkaller-80422-geda666ff2276 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/12/2023
=====================================================
We can follow the call chain and find that 'bcm_tx_setup' function
calls 'memcpy_from_msg' to copy some content to the newly allocated
frame of 'op->frames'. After that the 'len' field of copied structure
being compared with some constant value (64 or 8). However, if
'memcpy_from_msg' returns an error, we will compare some uninitialized
memory. This triggers 'uninit-value' issue.
This patch will add 'memcpy_from_msg' possible errors processing to
avoid uninit-value issue.
Tested via syzkaller |
| In the Linux kernel, the following vulnerability has been resolved:
kernel/fail_function: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: Handle pairing of E-switch via uplink un/load APIs
In case user switch a device from switchdev mode to legacy mode, mlx5
first unpair the E-switch and afterwards unload the uplink vport.
From the other hand, in case user remove or reload a device, mlx5
first unload the uplink vport and afterwards unpair the E-switch.
The latter is causing a bug[1], hence, handle pairing of E-switch as
part of uplink un/load APIs.
[1]
In case VF_LAG is used, every tc fdb flow is duplicated to the peer
esw. However, the original esw keeps a pointer to this duplicated
flow, not the peer esw.
e.g.: if user create tc fdb flow over esw0, the flow is duplicated
over esw1, in FW/HW, but in SW, esw0 keeps a pointer to the duplicated
flow.
During module unload while a peer tc fdb flow is still offloaded, in
case the first device to be removed is the peer device (esw1 in the
example above), the peer net-dev is destroyed, and so the mlx5e_priv
is memset to 0.
Afterwards, the peer device is trying to unpair himself from the
original device (esw0 in the example above). Unpair API invoke the
original device to clear peer flow from its eswitch (esw0), but the
peer flow, which is stored over the original eswitch (esw0), is
trying to use the peer mlx5e_priv, which is memset to 0 and result in
bellow kernel-oops.
[ 157.964081 ] BUG: unable to handle page fault for address: 000000000002ce60
[ 157.964662 ] #PF: supervisor read access in kernel mode
[ 157.965123 ] #PF: error_code(0x0000) - not-present page
[ 157.965582 ] PGD 0 P4D 0
[ 157.965866 ] Oops: 0000 [#1] SMP
[ 157.967670 ] RIP: 0010:mlx5e_tc_del_fdb_flow+0x48/0x460 [mlx5_core]
[ 157.976164 ] Call Trace:
[ 157.976437 ] <TASK>
[ 157.976690 ] __mlx5e_tc_del_fdb_peer_flow+0xe6/0x100 [mlx5_core]
[ 157.977230 ] mlx5e_tc_clean_fdb_peer_flows+0x67/0x90 [mlx5_core]
[ 157.977767 ] mlx5_esw_offloads_unpair+0x2d/0x1e0 [mlx5_core]
[ 157.984653 ] mlx5_esw_offloads_devcom_event+0xbf/0x130 [mlx5_core]
[ 157.985212 ] mlx5_devcom_send_event+0xa3/0xb0 [mlx5_core]
[ 157.985714 ] esw_offloads_disable+0x5a/0x110 [mlx5_core]
[ 157.986209 ] mlx5_eswitch_disable_locked+0x152/0x170 [mlx5_core]
[ 157.986757 ] mlx5_eswitch_disable+0x51/0x80 [mlx5_core]
[ 157.987248 ] mlx5_unload+0x2a/0xb0 [mlx5_core]
[ 157.987678 ] mlx5_uninit_one+0x5f/0xd0 [mlx5_core]
[ 157.988127 ] remove_one+0x64/0xe0 [mlx5_core]
[ 157.988549 ] pci_device_remove+0x31/0xa0
[ 157.988933 ] device_release_driver_internal+0x18f/0x1f0
[ 157.989402 ] driver_detach+0x3f/0x80
[ 157.989754 ] bus_remove_driver+0x70/0xf0
[ 157.990129 ] pci_unregister_driver+0x34/0x90
[ 157.990537 ] mlx5_cleanup+0xc/0x1c [mlx5_core]
[ 157.990972 ] __x64_sys_delete_module+0x15a/0x250
[ 157.991398 ] ? exit_to_user_mode_prepare+0xea/0x110
[ 157.991840 ] do_syscall_64+0x3d/0x90
[ 157.992198 ] entry_SYSCALL_64_after_hwframe+0x46/0xb0 |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix deadlock when aborting transaction during relocation with scrub
Before relocating a block group we pause scrub, then do the relocation and
then unpause scrub. The relocation process requires starting and committing
a transaction, and if we have a failure in the critical section of the
transaction commit path (transaction state >= TRANS_STATE_COMMIT_START),
we will deadlock if there is a paused scrub.
That results in stack traces like the following:
[42.479] BTRFS info (device sdc): relocating block group 53876686848 flags metadata|raid6
[42.936] BTRFS warning (device sdc): Skipping commit of aborted transaction.
[42.936] ------------[ cut here ]------------
[42.936] BTRFS: Transaction aborted (error -28)
[42.936] WARNING: CPU: 11 PID: 346822 at fs/btrfs/transaction.c:1977 btrfs_commit_transaction+0xcc8/0xeb0 [btrfs]
[42.936] Modules linked in: dm_flakey dm_mod loop btrfs (...)
[42.936] CPU: 11 PID: 346822 Comm: btrfs Tainted: G W 6.3.0-rc2-btrfs-next-127+ #1
[42.936] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[42.936] RIP: 0010:btrfs_commit_transaction+0xcc8/0xeb0 [btrfs]
[42.936] Code: ff ff 45 8b (...)
[42.936] RSP: 0018:ffffb58649633b48 EFLAGS: 00010282
[42.936] RAX: 0000000000000000 RBX: ffff8be6ef4d5bd8 RCX: 0000000000000000
[42.936] RDX: 0000000000000002 RSI: ffffffffb35e7782 RDI: 00000000ffffffff
[42.936] RBP: ffff8be6ef4d5c98 R08: 0000000000000000 R09: ffffb586496339e8
[42.936] R10: 0000000000000001 R11: 0000000000000001 R12: ffff8be6d38c7c00
[42.936] R13: 00000000ffffffe4 R14: ffff8be6c268c000 R15: ffff8be6ef4d5cf0
[42.936] FS: 00007f381a82b340(0000) GS:ffff8beddfcc0000(0000) knlGS:0000000000000000
[42.936] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[42.936] CR2: 00007f1e35fb7638 CR3: 0000000117680006 CR4: 0000000000370ee0
[42.936] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[42.936] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[42.936] Call Trace:
[42.936] <TASK>
[42.936] ? start_transaction+0xcb/0x610 [btrfs]
[42.936] prepare_to_relocate+0x111/0x1a0 [btrfs]
[42.936] relocate_block_group+0x57/0x5d0 [btrfs]
[42.936] ? btrfs_wait_nocow_writers+0x25/0xb0 [btrfs]
[42.936] btrfs_relocate_block_group+0x248/0x3c0 [btrfs]
[42.936] ? __pfx_autoremove_wake_function+0x10/0x10
[42.936] btrfs_relocate_chunk+0x3b/0x150 [btrfs]
[42.936] btrfs_balance+0x8ff/0x11d0 [btrfs]
[42.936] ? __kmem_cache_alloc_node+0x14a/0x410
[42.936] btrfs_ioctl+0x2334/0x32c0 [btrfs]
[42.937] ? mod_objcg_state+0xd2/0x360
[42.937] ? refill_obj_stock+0xb0/0x160
[42.937] ? seq_release+0x25/0x30
[42.937] ? __rseq_handle_notify_resume+0x3b5/0x4b0
[42.937] ? percpu_counter_add_batch+0x2e/0xa0
[42.937] ? __x64_sys_ioctl+0x88/0xc0
[42.937] __x64_sys_ioctl+0x88/0xc0
[42.937] do_syscall_64+0x38/0x90
[42.937] entry_SYSCALL_64_after_hwframe+0x72/0xdc
[42.937] RIP: 0033:0x7f381a6ffe9b
[42.937] Code: 00 48 89 44 24 (...)
[42.937] RSP: 002b:00007ffd45ecf060 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
[42.937] RAX: ffffffffffffffda RBX: 0000000000000001 RCX: 00007f381a6ffe9b
[42.937] RDX: 00007ffd45ecf150 RSI: 00000000c4009420 RDI: 0000000000000003
[42.937] RBP: 0000000000000003 R08: 0000000000000013 R09: 0000000000000000
[42.937] R10: 00007f381a60c878 R11: 0000000000000246 R12: 00007ffd45ed0423
[42.937] R13: 00007ffd45ecf150 R14: 0000000000000000 R15: 00007ffd45ecf148
[42.937] </TASK>
[42.937] ---[ end trace 0000000000000000 ]---
[42.937] BTRFS: error (device sdc: state A) in cleanup_transaction:1977: errno=-28 No space left
[59.196] INFO: task btrfs:346772 blocked for more than 120 seconds.
[59.196] Tainted: G W 6.3.0-rc2-btrfs-next-127+ #1
[59.196] "echo 0 > /proc/sys/kernel/hung_
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
media: ov2740: Fix memleak in ov2740_init_controls()
There is a kmemleak when testing the media/i2c/ov2740.c with bpf mock
device:
unreferenced object 0xffff8881090e19e0 (size 16):
comm "51-i2c-ov2740", pid 278, jiffies 4294781584 (age 23.613s)
hex dump (first 16 bytes):
00 f3 7c 0b 81 88 ff ff 80 75 6a 09 81 88 ff ff ..|......uj.....
backtrace:
[<000000004e9fad8f>] __kmalloc_node+0x44/0x1b0
[<0000000039c802f4>] kvmalloc_node+0x34/0x180
[<000000009b8b5c63>] v4l2_ctrl_handler_init_class+0x11d/0x180
[videodev]
[<0000000038644056>] ov2740_probe+0x37d/0x84f [ov2740]
[<0000000092489f59>] i2c_device_probe+0x28d/0x680
[<000000001038babe>] really_probe+0x17c/0x3f0
[<0000000098c7af1c>] __driver_probe_device+0xe3/0x170
[<00000000e1b3dc24>] device_driver_attach+0x34/0x80
[<000000005a04a34d>] bind_store+0x10b/0x1a0
[<00000000ce25d4f2>] drv_attr_store+0x49/0x70
[<000000007d9f4e9a>] sysfs_kf_write+0x8c/0xb0
[<00000000be6cff0f>] kernfs_fop_write_iter+0x216/0x2e0
[<0000000031ddb40a>] vfs_write+0x658/0x810
[<0000000041beecdd>] ksys_write+0xd6/0x1b0
[<0000000023755840>] do_syscall_64+0x38/0x90
[<00000000b2cc2da2>] entry_SYSCALL_64_after_hwframe+0x63/0xcd
ov2740_init_controls() won't clean all the allocated resources in fail
path, which may causes the memleaks. Add v4l2_ctrl_handler_free() to
prevent memleak. |
| In the Linux kernel, the following vulnerability has been resolved:
accel/qaic: Fix slicing memory leak
The temporary buffer storing slicing configuration data from user is only
freed on error. This is a memory leak. Free the buffer unconditionally. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/sched: Check scheduler work queue before calling timeout handling
During an IGT GPU reset test we see again oops despite of
commit 0c8c901aaaebc9 (drm/sched: Check scheduler ready before calling
timeout handling).
It uses ready condition whether to call drm_sched_fault which unwind
the TDR leads to GPU reset.
However it looks the ready condition is overloaded with other meanings,
for example, for the following stack is related GPU reset :
0 gfx_v9_0_cp_gfx_start
1 gfx_v9_0_cp_gfx_resume
2 gfx_v9_0_cp_resume
3 gfx_v9_0_hw_init
4 gfx_v9_0_resume
5 amdgpu_device_ip_resume_phase2
does the following:
/* start the ring */
gfx_v9_0_cp_gfx_start(adev);
ring->sched.ready = true;
The same approach is for other ASICs as well :
gfx_v8_0_cp_gfx_resume
gfx_v10_0_kiq_resume, etc...
As a result, our GPU reset test causes GPU fault which calls unconditionally gfx_v9_0_fault
and then drm_sched_fault. However now it depends on whether the interrupt service routine
drm_sched_fault is executed after gfx_v9_0_cp_gfx_start is completed which sets the ready
field of the scheduler to true even for uninitialized schedulers and causes oops vs
no fault or when ISR drm_sched_fault is completed prior gfx_v9_0_cp_gfx_start and
NULL pointer dereference does not occur.
Use the field timeout_wq to prevent oops for uninitialized schedulers.
The field could be initialized by the work queue of resetting the domain.
v1: Corrections to commit message (Luben) |
| In the Linux kernel, the following vulnerability has been resolved:
drm/ttm: check null pointer before accessing when swapping
Add a check to avoid null pointer dereference as below:
[ 90.002283] general protection fault, probably for non-canonical
address 0xdffffc0000000000: 0000 [#1] PREEMPT SMP KASAN NOPTI
[ 90.002292] KASAN: null-ptr-deref in range
[0x0000000000000000-0x0000000000000007]
[ 90.002346] ? exc_general_protection+0x159/0x240
[ 90.002352] ? asm_exc_general_protection+0x26/0x30
[ 90.002357] ? ttm_bo_evict_swapout_allowable+0x322/0x5e0 [ttm]
[ 90.002365] ? ttm_bo_evict_swapout_allowable+0x42e/0x5e0 [ttm]
[ 90.002373] ttm_bo_swapout+0x134/0x7f0 [ttm]
[ 90.002383] ? __pfx_ttm_bo_swapout+0x10/0x10 [ttm]
[ 90.002391] ? lock_acquire+0x44d/0x4f0
[ 90.002398] ? ttm_device_swapout+0xa5/0x260 [ttm]
[ 90.002412] ? lock_acquired+0x355/0xa00
[ 90.002416] ? do_raw_spin_trylock+0xb6/0x190
[ 90.002421] ? __pfx_lock_acquired+0x10/0x10
[ 90.002426] ? ttm_global_swapout+0x25/0x210 [ttm]
[ 90.002442] ttm_device_swapout+0x198/0x260 [ttm]
[ 90.002456] ? __pfx_ttm_device_swapout+0x10/0x10 [ttm]
[ 90.002472] ttm_global_swapout+0x75/0x210 [ttm]
[ 90.002486] ttm_tt_populate+0x187/0x3f0 [ttm]
[ 90.002501] ttm_bo_handle_move_mem+0x437/0x590 [ttm]
[ 90.002517] ttm_bo_validate+0x275/0x430 [ttm]
[ 90.002530] ? __pfx_ttm_bo_validate+0x10/0x10 [ttm]
[ 90.002544] ? kasan_save_stack+0x33/0x60
[ 90.002550] ? kasan_set_track+0x25/0x30
[ 90.002554] ? __kasan_kmalloc+0x8f/0xa0
[ 90.002558] ? amdgpu_gtt_mgr_new+0x81/0x420 [amdgpu]
[ 90.003023] ? ttm_resource_alloc+0xf6/0x220 [ttm]
[ 90.003038] amdgpu_bo_pin_restricted+0x2dd/0x8b0 [amdgpu]
[ 90.003210] ? __x64_sys_ioctl+0x131/0x1a0
[ 90.003210] ? do_syscall_64+0x60/0x90 |
| In the Linux kernel, the following vulnerability has been resolved:
accel/habanalabs: postpone mem_mgr IDR destruction to hpriv_release()
The memory manager IDR is currently destroyed when user releases the
file descriptor.
However, at this point the user context might be still held, and memory
buffers might be still in use.
Later on, calls to release those buffers will fail due to not finding
their handles in the IDR, leading to a memory leak.
To avoid this leak, split the IDR destruction from the memory manager
fini, and postpone it to hpriv_release() when there is no user context
and no buffers are used. |
| In the Linux kernel, the following vulnerability has been resolved:
skbuff: skb_segment, Call zero copy functions before using skbuff frags
Commit bf5c25d60861 ("skbuff: in skb_segment, call zerocopy functions
once per nskb") added the call to zero copy functions in skb_segment().
The change introduced a bug in skb_segment() because skb_orphan_frags()
may possibly change the number of fragments or allocate new fragments
altogether leaving nrfrags and frag to point to the old values. This can
cause a panic with stacktrace like the one below.
[ 193.894380] BUG: kernel NULL pointer dereference, address: 00000000000000bc
[ 193.895273] CPU: 13 PID: 18164 Comm: vh-net-17428 Kdump: loaded Tainted: G O 5.15.123+ #26
[ 193.903919] RIP: 0010:skb_segment+0xb0e/0x12f0
[ 194.021892] Call Trace:
[ 194.027422] <TASK>
[ 194.072861] tcp_gso_segment+0x107/0x540
[ 194.082031] inet_gso_segment+0x15c/0x3d0
[ 194.090783] skb_mac_gso_segment+0x9f/0x110
[ 194.095016] __skb_gso_segment+0xc1/0x190
[ 194.103131] netem_enqueue+0x290/0xb10 [sch_netem]
[ 194.107071] dev_qdisc_enqueue+0x16/0x70
[ 194.110884] __dev_queue_xmit+0x63b/0xb30
[ 194.121670] bond_start_xmit+0x159/0x380 [bonding]
[ 194.128506] dev_hard_start_xmit+0xc3/0x1e0
[ 194.131787] __dev_queue_xmit+0x8a0/0xb30
[ 194.138225] macvlan_start_xmit+0x4f/0x100 [macvlan]
[ 194.141477] dev_hard_start_xmit+0xc3/0x1e0
[ 194.144622] sch_direct_xmit+0xe3/0x280
[ 194.147748] __dev_queue_xmit+0x54a/0xb30
[ 194.154131] tap_get_user+0x2a8/0x9c0 [tap]
[ 194.157358] tap_sendmsg+0x52/0x8e0 [tap]
[ 194.167049] handle_tx_zerocopy+0x14e/0x4c0 [vhost_net]
[ 194.173631] handle_tx+0xcd/0xe0 [vhost_net]
[ 194.176959] vhost_worker+0x76/0xb0 [vhost]
[ 194.183667] kthread+0x118/0x140
[ 194.190358] ret_from_fork+0x1f/0x30
[ 194.193670] </TASK>
In this case calling skb_orphan_frags() updated nr_frags leaving nrfrags
local variable in skb_segment() stale. This resulted in the code hitting
i >= nrfrags prematurely and trying to move to next frag_skb using
list_skb pointer, which was NULL, and caused kernel panic. Move the call
to zero copy functions before using frags and nr_frags. |
| In the Linux kernel, the following vulnerability has been resolved:
staging: pi433: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. This requires saving off the root directory dentry to make
creation of individual device subdirectories easier. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: u_serial: Add null pointer check in gserial_suspend
Consider a case where gserial_disconnect has already cleared
gser->ioport. And if gserial_suspend gets called afterwards,
it will lead to accessing of gser->ioport and thus causing
null pointer dereference.
Avoid this by adding a null pointer check. Added a static
spinlock to prevent gser->ioport from becoming null after
the newly added null pointer check. |
| In the Linux kernel, the following vulnerability has been resolved:
md/raid10: check slab-out-of-bounds in md_bitmap_get_counter
If we write a large number to md/bitmap_set_bits, md_bitmap_checkpage()
will return -EINVAL because 'page >= bitmap->pages', but the return value
was not checked immediately in md_bitmap_get_counter() in order to set
*blocks value and slab-out-of-bounds occurs.
Move check of 'page >= bitmap->pages' to md_bitmap_get_counter() and
return directly if true. |
| A flaw was found in Podman. In a Containerfile or Podman, data written to RUN --mount=type=bind mounts during the podman build is not discarded. This issue can lead to files created within the container appearing in the temporary build context directory on the host, leaving the created files accessible. |
| A flaw has been found in code-projects Faculty Management System 1.0. The affected element is an unknown function of the file /admin/php/crud.php. This manipulation of the argument fieldname/tablename causes sql injection. The attack is possible to be carried out remotely. The exploit has been published and may be used. |
| A flaw was found in the quarkus-resteasy extension, which causes memory leaks when client requests with low timeouts are made. If a client request times out, a buffer is not released correctly, leading to increased memory usage and eventual application crash due to OutOfMemoryError. |
| A security regression (CVE-2006-5051) was discovered in OpenSSH's server (sshd). There is a race condition which can lead sshd to handle some signals in an unsafe manner. An unauthenticated, remote attacker may be able to trigger it by failing to authenticate within a set time period. |
| A data corruption vulnerability has been identified in the luksmeta utility when used with the LUKS1 disk encryption format. An attacker with the necessary permissions can exploit this flaw by writing a large amount of metadata to an encrypted device. The utility fails to correctly validate the available space, causing the metadata to overwrite and corrupt the user's encrypted data. This action leads to a permanent loss of the stored information. Devices using the LUKS formats other than LUKS1 are not affected by this issue. |