| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe: prevent UAF around preempt fence
The fence lock is part of the queue, therefore in the current design
anything locking the fence should then also hold a ref to the queue to
prevent the queue from being freed.
However, currently it looks like we signal the fence and then drop the
queue ref, but if something is waiting on the fence, the waiter is
kicked to wake up at some later point, where upon waking up it first
grabs the lock before checking the fence state. But if we have already
dropped the queue ref, then the lock might already be freed as part of
the queue, leading to uaf.
To prevent this, move the fence lock into the fence itself so we don't
run into lifetime issues. Alternative might be to have device level
lock, or only release the queue in the fence release callback, however
that might require pushing to another worker to avoid locking issues.
References: https://gitlab.freedesktop.org/drm/xe/kernel/-/issues/2454
References: https://gitlab.freedesktop.org/drm/xe/kernel/-/issues/2342
References: https://gitlab.freedesktop.org/drm/xe/kernel/-/issues/2020
(cherry picked from commit 7116c35aacedc38be6d15bd21b2fc936eed0008b) |
| In the Linux kernel, the following vulnerability has been resolved:
nfsd: prevent panic for nfsv4.0 closed files in nfs4_show_open
Prior to commit 3f29cc82a84c ("nfsd: split sc_status out of
sc_type") states_show() relied on sc_type field to be of valid
type before calling into a subfunction to show content of a
particular stateid. From that commit, we split the validity of
the stateid into sc_status and no longer changed sc_type to 0
while unhashing the stateid. This resulted in kernel oopsing
for nfsv4.0 opens that stay around and in nfs4_show_open()
would derefence sc_file which was NULL.
Instead, for closed open stateids forgo displaying information
that relies of having a valid sc_file.
To reproduce: mount the server with 4.0, read and close
a file and then on the server cat /proc/fs/nfsd/clients/2/states
[ 513.590804] Call trace:
[ 513.590925] _raw_spin_lock+0xcc/0x160
[ 513.591119] nfs4_show_open+0x78/0x2c0 [nfsd]
[ 513.591412] states_show+0x44c/0x488 [nfsd]
[ 513.591681] seq_read_iter+0x5d8/0x760
[ 513.591896] seq_read+0x188/0x208
[ 513.592075] vfs_read+0x148/0x470
[ 513.592241] ksys_read+0xcc/0x178 |
| In the Linux kernel, the following vulnerability has been resolved:
pktgen: use cpus_read_lock() in pg_net_init()
I have seen the WARN_ON(smp_processor_id() != cpu) firing
in pktgen_thread_worker() during tests.
We must use cpus_read_lock()/cpus_read_unlock()
around the for_each_online_cpu(cpu) loop.
While we are at it use WARN_ON_ONCE() to avoid a possible syslog flood. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: btnxpuart: Fix random crash seen while removing driver
This fixes the random kernel crash seen while removing the driver, when
running the load/unload test over multiple iterations.
1) modprobe btnxpuart
2) hciconfig hci0 reset
3) hciconfig (check hci0 interface up with valid BD address)
4) modprobe -r btnxpuart
Repeat steps 1 to 4
The ps_wakeup() call in btnxpuart_close() schedules the psdata->work(),
which gets scheduled after module is removed, causing a kernel crash.
This hidden issue got highlighted after enabling Power Save by default
in 4183a7be7700 (Bluetooth: btnxpuart: Enable Power Save feature on
startup)
The new ps_cleanup() deasserts UART break immediately while closing
serdev device, cancels any scheduled ps_work and destroys the ps_lock
mutex.
[ 85.884604] Unable to handle kernel paging request at virtual address ffffd4a61638f258
[ 85.884624] Mem abort info:
[ 85.884625] ESR = 0x0000000086000007
[ 85.884628] EC = 0x21: IABT (current EL), IL = 32 bits
[ 85.884633] SET = 0, FnV = 0
[ 85.884636] EA = 0, S1PTW = 0
[ 85.884638] FSC = 0x07: level 3 translation fault
[ 85.884642] swapper pgtable: 4k pages, 48-bit VAs, pgdp=0000000041dd0000
[ 85.884646] [ffffd4a61638f258] pgd=1000000095fff003, p4d=1000000095fff003, pud=100000004823d003, pmd=100000004823e003, pte=0000000000000000
[ 85.884662] Internal error: Oops: 0000000086000007 [#1] PREEMPT SMP
[ 85.890932] Modules linked in: algif_hash algif_skcipher af_alg overlay fsl_jr_uio caam_jr caamkeyblob_desc caamhash_desc caamalg_desc crypto_engine authenc libdes crct10dif_ce polyval_ce polyval_generic snd_soc_imx_spdif snd_soc_imx_card snd_soc_ak5558 snd_soc_ak4458 caam secvio error snd_soc_fsl_spdif snd_soc_fsl_micfil snd_soc_fsl_sai snd_soc_fsl_utils gpio_ir_recv rc_core fuse [last unloaded: btnxpuart(O)]
[ 85.927297] CPU: 1 PID: 67 Comm: kworker/1:3 Tainted: G O 6.1.36+g937b1be4345a #1
[ 85.936176] Hardware name: FSL i.MX8MM EVK board (DT)
[ 85.936182] Workqueue: events 0xffffd4a61638f380
[ 85.936198] pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 85.952817] pc : 0xffffd4a61638f258
[ 85.952823] lr : 0xffffd4a61638f258
[ 85.952827] sp : ffff8000084fbd70
[ 85.952829] x29: ffff8000084fbd70 x28: 0000000000000000 x27: 0000000000000000
[ 85.963112] x26: ffffd4a69133f000 x25: ffff4bf1c8540990 x24: ffff4bf215b87305
[ 85.963119] x23: ffff4bf215b87300 x22: ffff4bf1c85409d0 x21: ffff4bf1c8540970
[ 85.977382] x20: 0000000000000000 x19: ffff4bf1c8540880 x18: 0000000000000000
[ 85.977391] x17: 0000000000000000 x16: 0000000000000133 x15: 0000ffffe2217090
[ 85.977399] x14: 0000000000000001 x13: 0000000000000133 x12: 0000000000000139
[ 85.977407] x11: 0000000000000001 x10: 0000000000000a60 x9 : ffff8000084fbc50
[ 85.977417] x8 : ffff4bf215b7d000 x7 : ffff4bf215b83b40 x6 : 00000000000003e8
[ 85.977424] x5 : 00000000410fd030 x4 : 0000000000000000 x3 : 0000000000000000
[ 85.977432] x2 : 0000000000000000 x1 : ffff4bf1c4265880 x0 : 0000000000000000
[ 85.977443] Call trace:
[ 85.977446] 0xffffd4a61638f258
[ 85.977451] 0xffffd4a61638f3e8
[ 85.977455] process_one_work+0x1d4/0x330
[ 85.977464] worker_thread+0x6c/0x430
[ 85.977471] kthread+0x108/0x10c
[ 85.977476] ret_from_fork+0x10/0x20
[ 85.977488] Code: bad PC value
[ 85.977491] ---[ end trace 0000000000000000 ]---
Preset since v6.9.11 |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: brcmfmac: cfg80211: Handle SSID based pmksa deletion
wpa_supplicant 2.11 sends since 1efdba5fdc2c ("Handle PMKSA flush in the
driver for SAE/OWE offload cases") SSID based PMKSA del commands.
brcmfmac is not prepared and tries to dereference the NULL bssid and
pmkid pointers in cfg80211_pmksa. PMKID_V3 operations support SSID based
updates so copy the SSID. |
| In the Linux kernel, the following vulnerability has been resolved:
igb: cope with large MAX_SKB_FRAGS
Sabrina reports that the igb driver does not cope well with large
MAX_SKB_FRAG values: setting MAX_SKB_FRAG to 45 causes payload
corruption on TX.
An easy reproducer is to run ssh to connect to the machine. With
MAX_SKB_FRAGS=17 it works, with MAX_SKB_FRAGS=45 it fails. This has
been reported originally in
https://bugzilla.redhat.com/show_bug.cgi?id=2265320
The root cause of the issue is that the driver does not take into
account properly the (possibly large) shared info size when selecting
the ring layout, and will try to fit two packets inside the same 4K
page even when the 1st fraglist will trump over the 2nd head.
Address the issue by checking if 2K buffers are insufficient. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/hugetlb: fix hugetlb vs. core-mm PT locking
We recently made GUP's common page table walking code to also walk hugetlb
VMAs without most hugetlb special-casing, preparing for the future of
having less hugetlb-specific page table walking code in the codebase.
Turns out that we missed one page table locking detail: page table locking
for hugetlb folios that are not mapped using a single PMD/PUD.
Assume we have hugetlb folio that spans multiple PTEs (e.g., 64 KiB
hugetlb folios on arm64 with 4 KiB base page size). GUP, as it walks the
page tables, will perform a pte_offset_map_lock() to grab the PTE table
lock.
However, hugetlb that concurrently modifies these page tables would
actually grab the mm->page_table_lock: with USE_SPLIT_PTE_PTLOCKS, the
locks would differ. Something similar can happen right now with hugetlb
folios that span multiple PMDs when USE_SPLIT_PMD_PTLOCKS.
This issue can be reproduced [1], for example triggering:
[ 3105.936100] ------------[ cut here ]------------
[ 3105.939323] WARNING: CPU: 31 PID: 2732 at mm/gup.c:142 try_grab_folio+0x11c/0x188
[ 3105.944634] Modules linked in: [...]
[ 3105.974841] CPU: 31 PID: 2732 Comm: reproducer Not tainted 6.10.0-64.eln141.aarch64 #1
[ 3105.980406] Hardware name: QEMU KVM Virtual Machine, BIOS edk2-20240524-4.fc40 05/24/2024
[ 3105.986185] pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 3105.991108] pc : try_grab_folio+0x11c/0x188
[ 3105.994013] lr : follow_page_pte+0xd8/0x430
[ 3105.996986] sp : ffff80008eafb8f0
[ 3105.999346] x29: ffff80008eafb900 x28: ffffffe8d481f380 x27: 00f80001207cff43
[ 3106.004414] x26: 0000000000000001 x25: 0000000000000000 x24: ffff80008eafba48
[ 3106.009520] x23: 0000ffff9372f000 x22: ffff7a54459e2000 x21: ffff7a546c1aa978
[ 3106.014529] x20: ffffffe8d481f3c0 x19: 0000000000610041 x18: 0000000000000001
[ 3106.019506] x17: 0000000000000001 x16: ffffffffffffffff x15: 0000000000000000
[ 3106.024494] x14: ffffb85477fdfe08 x13: 0000ffff9372ffff x12: 0000000000000000
[ 3106.029469] x11: 1fffef4a88a96be1 x10: ffff7a54454b5f0c x9 : ffffb854771b12f0
[ 3106.034324] x8 : 0008000000000000 x7 : ffff7a546c1aa980 x6 : 0008000000000080
[ 3106.038902] x5 : 00000000001207cf x4 : 0000ffff9372f000 x3 : ffffffe8d481f000
[ 3106.043420] x2 : 0000000000610041 x1 : 0000000000000001 x0 : 0000000000000000
[ 3106.047957] Call trace:
[ 3106.049522] try_grab_folio+0x11c/0x188
[ 3106.051996] follow_pmd_mask.constprop.0.isra.0+0x150/0x2e0
[ 3106.055527] follow_page_mask+0x1a0/0x2b8
[ 3106.058118] __get_user_pages+0xf0/0x348
[ 3106.060647] faultin_page_range+0xb0/0x360
[ 3106.063651] do_madvise+0x340/0x598
Let's make huge_pte_lockptr() effectively use the same PT locks as any
core-mm page table walker would. Add ptep_lockptr() to obtain the PTE
page table lock using a pte pointer -- unfortunately we cannot convert
pte_lockptr() because virt_to_page() doesn't work with kmap'ed page tables
we can have with CONFIG_HIGHPTE.
Handle CONFIG_PGTABLE_LEVELS correctly by checking in reverse order, such
that when e.g., CONFIG_PGTABLE_LEVELS==2 with
PGDIR_SIZE==P4D_SIZE==PUD_SIZE==PMD_SIZE will work as expected. Document
why that works.
There is one ugly case: powerpc 8xx, whereby we have an 8 MiB hugetlb
folio being mapped using two PTE page tables. While hugetlb wants to take
the PMD table lock, core-mm would grab the PTE table lock of one of both
PTE page tables. In such corner cases, we have to make sure that both
locks match, which is (fortunately!) currently guaranteed for 8xx as it
does not support SMP and consequently doesn't use split PT locks.
[1] https://lore.kernel.org/all/1bbfcc7f-f222-45a5-ac44-c5a1381c596d@redhat.com/ |
| In the Linux kernel, the following vulnerability has been resolved:
md/raid1: Fix data corruption for degraded array with slow disk
read_balance() will avoid reading from slow disks as much as possible,
however, if valid data only lands in slow disks, and a new normal disk
is still in recovery, unrecovered data can be read:
raid1_read_request
read_balance
raid1_should_read_first
-> return false
choose_best_rdev
-> normal disk is not recovered, return -1
choose_bb_rdev
-> missing the checking of recovery, return the normal disk
-> read unrecovered data
Root cause is that the checking of recovery is missing in
choose_bb_rdev(). Hence add such checking to fix the problem.
Also fix similar problem in choose_slow_rdev(). |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix a kernel verifier crash in stacksafe()
Daniel Hodges reported a kernel verifier crash when playing with sched-ext.
Further investigation shows that the crash is due to invalid memory access
in stacksafe(). More specifically, it is the following code:
if (exact != NOT_EXACT &&
old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
cur->stack[spi].slot_type[i % BPF_REG_SIZE])
return false;
The 'i' iterates old->allocated_stack.
If cur->allocated_stack < old->allocated_stack the out-of-bound
access will happen.
To fix the issue add 'i >= cur->allocated_stack' check such that if
the condition is true, stacksafe() should fail. Otherwise,
cur->stack[spi].slot_type[i % BPF_REG_SIZE] memory access is legal. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: Fix IPsec RoCE MPV trace call
Prevent the call trace below from happening, by not allowing IPsec
creation over a slave, if master device doesn't support IPsec.
WARNING: CPU: 44 PID: 16136 at kernel/locking/rwsem.c:240 down_read+0x75/0x94
Modules linked in: esp4_offload esp4 act_mirred act_vlan cls_flower sch_ingress mlx5_vdpa vringh vhost_iotlb vdpa mst_pciconf(OE) nfsv3 nfs_acl nfs lockd grace fscache netfs xt_CHECKSUM xt_MASQUERADE xt_conntrack ipt_REJECT nf_reject_ipv4 nft_compat nft_counter nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 rfkill cuse fuse rpcrdma sunrpc rdma_ucm ib_srpt ib_isert iscsi_target_mod target_core_mod ib_umad ib_iser libiscsi scsi_transport_iscsi rdma_cm ib_ipoib iw_cm ib_cm ipmi_ssif intel_rapl_msr intel_rapl_common amd64_edac edac_mce_amd kvm_amd kvm irqbypass crct10dif_pclmul crc32_pclmul mlx5_ib ghash_clmulni_intel sha1_ssse3 dell_smbios ib_uverbs aesni_intel crypto_simd dcdbas wmi_bmof dell_wmi_descriptor cryptd pcspkr ib_core acpi_ipmi sp5100_tco ccp i2c_piix4 ipmi_si ptdma k10temp ipmi_devintf ipmi_msghandler acpi_power_meter acpi_cpufreq ext4 mbcache jbd2 sd_mod t10_pi sg mgag200 drm_kms_helper syscopyarea sysfillrect mlx5_core sysimgblt fb_sys_fops cec
ahci libahci mlxfw drm pci_hyperv_intf libata tg3 sha256_ssse3 tls megaraid_sas i2c_algo_bit psample wmi dm_mirror dm_region_hash dm_log dm_mod [last unloaded: mst_pci]
CPU: 44 PID: 16136 Comm: kworker/44:3 Kdump: loaded Tainted: GOE 5.15.0-20240509.el8uek.uek7_u3_update_v6.6_ipsec_bf.x86_64 #2
Hardware name: Dell Inc. PowerEdge R7525/074H08, BIOS 2.0.3 01/15/2021
Workqueue: events xfrm_state_gc_task
RIP: 0010:down_read+0x75/0x94
Code: 00 48 8b 45 08 65 48 8b 14 25 80 fc 01 00 83 e0 02 48 09 d0 48 83 c8 01 48 89 45 08 5d 31 c0 89 c2 89 c6 89 c7 e9 cb 88 3b 00 <0f> 0b 48 8b 45 08 a8 01 74 b2 a8 02 75 ae 48 89 c2 48 83 ca 02 f0
RSP: 0018:ffffb26387773da8 EFLAGS: 00010282
RAX: 0000000000000000 RBX: ffffa08b658af900 RCX: 0000000000000001
RDX: 0000000000000000 RSI: ff886bc5e1366f2f RDI: 0000000000000000
RBP: ffffa08b658af940 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000000 R12: ffffa0a9bfb31540
R13: ffffa0a9bfb37900 R14: 0000000000000000 R15: ffffa0a9bfb37905
FS: 0000000000000000(0000) GS:ffffa0a9bfb00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000055a45ed814e8 CR3: 000000109038a000 CR4: 0000000000350ee0
Call Trace:
<TASK>
? show_trace_log_lvl+0x1d6/0x2f9
? show_trace_log_lvl+0x1d6/0x2f9
? mlx5_devcom_for_each_peer_begin+0x29/0x60 [mlx5_core]
? down_read+0x75/0x94
? __warn+0x80/0x113
? down_read+0x75/0x94
? report_bug+0xa4/0x11d
? handle_bug+0x35/0x8b
? exc_invalid_op+0x14/0x75
? asm_exc_invalid_op+0x16/0x1b
? down_read+0x75/0x94
? down_read+0xe/0x94
mlx5_devcom_for_each_peer_begin+0x29/0x60 [mlx5_core]
mlx5_ipsec_fs_roce_tx_destroy+0xb1/0x130 [mlx5_core]
tx_destroy+0x1b/0xc0 [mlx5_core]
tx_ft_put+0x53/0xc0 [mlx5_core]
mlx5e_xfrm_free_state+0x45/0x90 [mlx5_core]
___xfrm_state_destroy+0x10f/0x1a2
xfrm_state_gc_task+0x81/0xa9
process_one_work+0x1f1/0x3c6
worker_thread+0x53/0x3e4
? process_one_work.cold+0x46/0x3c
kthread+0x127/0x144
? set_kthread_struct+0x60/0x52
ret_from_fork+0x22/0x2d
</TASK>
---[ end trace 5ef7896144d398e1 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm/dpu: move dpu_encoder's connector assignment to atomic_enable()
For cases where the crtc's connectors_changed was set without enable/active
getting toggled , there is an atomic_enable() call followed by an
atomic_disable() but without an atomic_mode_set().
This results in a NULL ptr access for the dpu_encoder_get_drm_fmt() call in
the atomic_enable() as the dpu_encoder's connector was cleared in the
atomic_disable() but not re-assigned as there was no atomic_mode_set() call.
Fix the NULL ptr access by moving the assignment for atomic_enable() and also
use drm_atomic_get_new_connector_for_encoder() to get the connector from
the atomic_state.
Patchwork: https://patchwork.freedesktop.org/patch/606729/ |
| In the Linux kernel, the following vulnerability has been resolved:
s390/boot: Avoid possible physmem_info segment corruption
When physical memory for the kernel image is allocated it does not
consider extra memory required for offsetting the image start to
match it with the lower 20 bits of KASLR virtual base address. That
might lead to kernel access beyond its memory range. |
| In the Linux kernel, the following vulnerability has been resolved:
nvme: move stopping keep-alive into nvme_uninit_ctrl()
Commit 4733b65d82bd ("nvme: start keep-alive after admin queue setup")
moves starting keep-alive from nvme_start_ctrl() into
nvme_init_ctrl_finish(), but don't move stopping keep-alive into
nvme_uninit_ctrl(), so keep-alive work can be started and keep pending
after failing to start controller, finally use-after-free is triggered if
nvme host driver is unloaded.
This patch fixes kernel panic when running nvme/004 in case that connection
failure is triggered, by moving stopping keep-alive into nvme_uninit_ctrl().
This way is reasonable because keep-alive is now started in
nvme_init_ctrl_finish(). |
| In the Linux kernel, the following vulnerability has been resolved:
nouveau/firmware: use dma non-coherent allocator
Currently, enabling SG_DEBUG in the kernel will cause nouveau to hit a
BUG() on startup, when the iommu is enabled:
kernel BUG at include/linux/scatterlist.h:187!
invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
CPU: 7 PID: 930 Comm: (udev-worker) Not tainted 6.9.0-rc3Lyude-Test+ #30
Hardware name: MSI MS-7A39/A320M GAMING PRO (MS-7A39), BIOS 1.I0 01/22/2019
RIP: 0010:sg_init_one+0x85/0xa0
Code: 69 88 32 01 83 e1 03 f6 c3 03 75 20 a8 01 75 1e 48 09 cb 41 89 54
24 08 49 89 1c 24 41 89 6c 24 0c 5b 5d 41 5c e9 7b b9 88 00 <0f> 0b 0f 0b
0f 0b 48 8b 05 5e 46 9a 01 eb b2 66 66 2e 0f 1f 84 00
RSP: 0018:ffffa776017bf6a0 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffffa77600d87000 RCX: 000000000000002b
RDX: 0000000000000001 RSI: 0000000000000000 RDI: ffffa77680d87000
RBP: 000000000000e000 R08: 0000000000000000 R09: 0000000000000000
R10: ffff98f4c46aa508 R11: 0000000000000000 R12: ffff98f4c46aa508
R13: ffff98f4c46aa008 R14: ffffa77600d4a000 R15: ffffa77600d4a018
FS: 00007feeb5aae980(0000) GS:ffff98f5c4dc0000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f22cb9a4520 CR3: 00000001043ba000 CR4: 00000000003506f0
Call Trace:
<TASK>
? die+0x36/0x90
? do_trap+0xdd/0x100
? sg_init_one+0x85/0xa0
? do_error_trap+0x65/0x80
? sg_init_one+0x85/0xa0
? exc_invalid_op+0x50/0x70
? sg_init_one+0x85/0xa0
? asm_exc_invalid_op+0x1a/0x20
? sg_init_one+0x85/0xa0
nvkm_firmware_ctor+0x14a/0x250 [nouveau]
nvkm_falcon_fw_ctor+0x42/0x70 [nouveau]
ga102_gsp_booter_ctor+0xb4/0x1a0 [nouveau]
r535_gsp_oneinit+0xb3/0x15f0 [nouveau]
? srso_return_thunk+0x5/0x5f
? srso_return_thunk+0x5/0x5f
? nvkm_udevice_new+0x95/0x140 [nouveau]
? srso_return_thunk+0x5/0x5f
? srso_return_thunk+0x5/0x5f
? ktime_get+0x47/0xb0
Fix this by using the non-coherent allocator instead, I think there
might be a better answer to this, but it involve ripping up some of
APIs using sg lists. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: s390: fix validity interception issue when gisa is switched off
We might run into a SIE validity if gisa has been disabled either via using
kernel parameter "kvm.use_gisa=0" or by setting the related sysfs
attribute to N (echo N >/sys/module/kvm/parameters/use_gisa).
The validity is caused by an invalid value in the SIE control block's
gisa designation. That happens because we pass the uninitialized gisa
origin to virt_to_phys() before writing it to the gisa designation.
To fix this we return 0 in kvm_s390_get_gisa_desc() if the origin is 0.
kvm_s390_get_gisa_desc() is used to determine which gisa designation to
set in the SIE control block. A value of 0 in the gisa designation disables
gisa usage.
The issue surfaces in the host kernel with the following kernel message as
soon a new kvm guest start is attemted.
kvm: unhandled validity intercept 0x1011
WARNING: CPU: 0 PID: 781237 at arch/s390/kvm/intercept.c:101 kvm_handle_sie_intercept+0x42e/0x4d0 [kvm]
Modules linked in: vhost_net tap tun xt_CHECKSUM xt_MASQUERADE xt_conntrack ipt_REJECT xt_tcpudp nft_compat x_tables nf_nat_tftp nf_conntrack_tftp vfio_pci_core irqbypass vhost_vsock vmw_vsock_virtio_transport_common vsock vhost vhost_iotlb kvm nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ip_set nf_tables sunrpc mlx5_ib ib_uverbs ib_core mlx5_core uvdevice s390_trng eadm_sch vfio_ccw zcrypt_cex4 mdev vfio_iommu_type1 vfio sch_fq_codel drm i2c_core loop drm_panel_orientation_quirks configfs nfnetlink lcs ctcm fsm dm_service_time ghash_s390 prng chacha_s390 libchacha aes_s390 des_s390 libdes sha3_512_s390 sha3_256_s390 sha512_s390 sha256_s390 sha1_s390 sha_common dm_mirror dm_region_hash dm_log zfcp scsi_transport_fc scsi_dh_rdac scsi_dh_emc scsi_dh_alua pkey zcrypt dm_multipath rng_core autofs4 [last unloaded: vfio_pci]
CPU: 0 PID: 781237 Comm: CPU 0/KVM Not tainted 6.10.0-08682-gcad9f11498ea #6
Hardware name: IBM 3931 A01 701 (LPAR)
Krnl PSW : 0704c00180000000 000003d93deb0122 (kvm_handle_sie_intercept+0x432/0x4d0 [kvm])
R:0 T:1 IO:1 EX:1 Key:0 M:1 W:0 P:0 AS:3 CC:0 PM:0 RI:0 EA:3
Krnl GPRS: 000003d900000027 000003d900000023 0000000000000028 000002cd00000000
000002d063a00900 00000359c6daf708 00000000000bebb5 0000000000001eff
000002cfd82e9000 000002cfd80bc000 0000000000001011 000003d93deda412
000003ff8962df98 000003d93de77ce0 000003d93deb011e 00000359c6daf960
Krnl Code: 000003d93deb0112: c020fffe7259 larl %r2,000003d93de7e5c4
000003d93deb0118: c0e53fa8beac brasl %r14,000003d9bd3c7e70
#000003d93deb011e: af000000 mc 0,0
>000003d93deb0122: a728ffea lhi %r2,-22
000003d93deb0126: a7f4fe24 brc 15,000003d93deafd6e
000003d93deb012a: 9101f0b0 tm 176(%r15),1
000003d93deb012e: a774fe48 brc 7,000003d93deafdbe
000003d93deb0132: 40a0f0ae sth %r10,174(%r15)
Call Trace:
[<000003d93deb0122>] kvm_handle_sie_intercept+0x432/0x4d0 [kvm]
([<000003d93deb011e>] kvm_handle_sie_intercept+0x42e/0x4d0 [kvm])
[<000003d93deacc10>] vcpu_post_run+0x1d0/0x3b0 [kvm]
[<000003d93deaceda>] __vcpu_run+0xea/0x2d0 [kvm]
[<000003d93dead9da>] kvm_arch_vcpu_ioctl_run+0x16a/0x430 [kvm]
[<000003d93de93ee0>] kvm_vcpu_ioctl+0x190/0x7c0 [kvm]
[<000003d9bd728b4e>] vfs_ioctl+0x2e/0x70
[<000003d9bd72a092>] __s390x_sys_ioctl+0xc2/0xd0
[<000003d9be0e9222>] __do_syscall+0x1f2/0x2e0
[<000003d9be0f9a90>] system_call+0x70/0x98
Last Breaking-Event-Address:
[<000003d9bd3c7f58>] __warn_printk+0xe8/0xf0 |
| In the Linux kernel, the following vulnerability has been resolved:
KEYS: trusted: dcp: fix leak of blob encryption key
Trusted keys unseal the key blob on load, but keep the sealed payload in
the blob field so that every subsequent read (export) will simply
convert this field to hex and send it to userspace.
With DCP-based trusted keys, we decrypt the blob encryption key (BEK)
in the Kernel due hardware limitations and then decrypt the blob payload.
BEK decryption is done in-place which means that the trusted key blob
field is modified and it consequently holds the BEK in plain text.
Every subsequent read of that key thus send the plain text BEK instead
of the encrypted BEK to userspace.
This issue only occurs when importing a trusted DCP-based key and
then exporting it again. This should rarely happen as the common use cases
are to either create a new trusted key and export it, or import a key
blob and then just use it without exporting it again.
Fix this by performing BEK decryption and encryption in a dedicated
buffer. Further always wipe the plain text BEK buffer to prevent leaking
the key via uninitialized memory. |
| In the Linux kernel, the following vulnerability has been resolved:
net: ethernet: mtk_wed: fix use-after-free panic in mtk_wed_setup_tc_block_cb()
When there are multiple ap interfaces on one band and with WED on,
turning the interface down will cause a kernel panic on MT798X.
Previously, cb_priv was freed in mtk_wed_setup_tc_block() without
marking NULL,and mtk_wed_setup_tc_block_cb() didn't check the value, too.
Assign NULL after free cb_priv in mtk_wed_setup_tc_block() and check NULL
in mtk_wed_setup_tc_block_cb().
----------
Unable to handle kernel paging request at virtual address 0072460bca32b4f5
Call trace:
mtk_wed_setup_tc_block_cb+0x4/0x38
0xffffffc0794084bc
tcf_block_playback_offloads+0x70/0x1e8
tcf_block_unbind+0x6c/0xc8
...
--------- |
| In the Linux kernel, the following vulnerability has been resolved:
vsock: fix recursive ->recvmsg calls
After a vsock socket has been added to a BPF sockmap, its prot->recvmsg
has been replaced with vsock_bpf_recvmsg(). Thus the following
recursiion could happen:
vsock_bpf_recvmsg()
-> __vsock_recvmsg()
-> vsock_connectible_recvmsg()
-> prot->recvmsg()
-> vsock_bpf_recvmsg() again
We need to fix it by calling the original ->recvmsg() without any BPF
sockmap logic in __vsock_recvmsg(). |
| In the Linux kernel, the following vulnerability has been resolved:
iommu: Restore lost return in iommu_report_device_fault()
When iommu_report_device_fault gets called with a partial fault it is
supposed to collect the fault into the group and then return.
Instead the return was accidently deleted which results in trying to
process the fault and an eventual crash.
Deleting the return was a typo, put it back. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/v3d: Fix out-of-bounds read in `v3d_csd_job_run()`
When enabling UBSAN on Raspberry Pi 5, we get the following warning:
[ 387.894977] UBSAN: array-index-out-of-bounds in drivers/gpu/drm/v3d/v3d_sched.c:320:3
[ 387.903868] index 7 is out of range for type '__u32 [7]'
[ 387.909692] CPU: 0 PID: 1207 Comm: kworker/u16:2 Tainted: G WC 6.10.3-v8-16k-numa #151
[ 387.919166] Hardware name: Raspberry Pi 5 Model B Rev 1.0 (DT)
[ 387.925961] Workqueue: v3d_csd drm_sched_run_job_work [gpu_sched]
[ 387.932525] Call trace:
[ 387.935296] dump_backtrace+0x170/0x1b8
[ 387.939403] show_stack+0x20/0x38
[ 387.942907] dump_stack_lvl+0x90/0xd0
[ 387.946785] dump_stack+0x18/0x28
[ 387.950301] __ubsan_handle_out_of_bounds+0x98/0xd0
[ 387.955383] v3d_csd_job_run+0x3a8/0x438 [v3d]
[ 387.960707] drm_sched_run_job_work+0x520/0x6d0 [gpu_sched]
[ 387.966862] process_one_work+0x62c/0xb48
[ 387.971296] worker_thread+0x468/0x5b0
[ 387.975317] kthread+0x1c4/0x1e0
[ 387.978818] ret_from_fork+0x10/0x20
[ 387.983014] ---[ end trace ]---
This happens because the UAPI provides only seven configuration
registers and we are reading the eighth position of this u32 array.
Therefore, fix the out-of-bounds read in `v3d_csd_job_run()` by
accessing only seven positions on the '__u32 [7]' array. The eighth
register exists indeed on V3D 7.1, but it isn't currently used. That
being so, let's guarantee that it remains unused and add a note that it
could be set in a future patch. |