Search

Search Results (313614 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-37728 1 Elastic 1 Kibana 2025-10-08 5.4 Medium
Insufficiently Protected Credentials in the Crowdstrike connector can lead to Crowdstrike credentials being leaked. A malicious user can access cached credentials from a Crowdstrike connector in another space by creating and running a Crowdstrike connector in a space to which they have access.
CVE-2025-40676 1 Bbmri-eric 1 Negotiator 2025-10-08 N/A
Insecure Direct Object Reference (IDOR) in Negotiator v3.15.2 from Biobanking and Biomolecular Resources - European Research Infrastructure (BBMRI-ERIC). This vulnerability allows an attacker to access or modify unauthorised resources by manipulating requests that use the 'userID' parameter in '/api/v3/users/<userID>', which may result in the exposure or alteration of sensitive data
CVE-2025-49594 1 Xwiki 1 Xwiki 2025-10-08 N/A
XWiki OIDC has various tools to manipulate OpenID Connect protocol in XWiki. Starting in version 2.17.1 and prior to version 2.18.2, anyone with VIEW access to a user profile can create a token for that user. If that XWiki instance is configured to allow token authentication, it allows authentication with any user (since users are very commonly viewable, at least to other registered users). Version 2.18.2 contains a patch. As a workaround, disable token access.
CVE-2025-52472 1 Xwiki 2 Xwiki, Xwiki-platform 2025-10-08 N/A
XWiki Platform is a generic wiki platform offering runtime services for applications built on top of it. Starting in version 4.3-milestone-1 and prior to versions 16.10.9, 17.4.2, and 17.5.0, the REST search URL is vulnerable to HQL injection via the `orderField` parameter. The specified value is added twice in the query, though, once in the field list for the select and once in the order clause, so it's not that easy to exploit. The part of the query between the two fields can be enclosed in single quotes to effectively remove them, but the query still needs to remain valid with the query two times in it. This has been patched in versions 17.5.0, 17.4.2, and 16.10.9. No known workarounds are available.
CVE-2025-53476 1 Openplcproject 2 Openplc V3, Openplc V3 Firmware 2025-10-08 5.3 Medium
A denial of service vulnerability exists in the ModbusTCP server functionality of OpenPLC _v3 a931181e8b81e36fadf7b74d5cba99b73c3f6d58. A specially crafted series of network connections can lead to the server not processing subsequent Modbus requests. An attacker can open a series of TCP connections to trigger this vulnerability.
CVE-2025-57247 2025-10-08 9.1 Critical
The BATBToken smart contract (address 0xfbf1388408670c02f0dbbb74251d8ded1d63b7a2, Compiler Version v0.8.26+commit.8a97fa7a) contains incorrect access control implementation in whitelist management functions. The setColdWhiteList() and setSpecialAddress() functions in the base ERC20 contract are declared as public without proper access control modifiers, allowing any user to bypass transfer restrictions and manipulate special address settings. This enables unauthorized users to circumvent cold time transfer restrictions and potentially disrupt dividend distribution mechanisms, leading to privilege escalation and violation of the contract's intended tokenomics.
CVE-2025-57515 2025-10-08 9.8 Critical
A SQL injection vulnerability has been identified in Uniclare Student Portal v2. This flaw allows remote attackers to inject arbitrary SQL commands via vulnerable input fields, enabling the execution of time-delay functions to infer database responses.
CVE-2025-43823 1 Liferay 2 Dxp, Portal 2025-10-08 N/A
Cross-site scripting (XSS) vulnerability in the Commerce Search Result widget in Liferay Portal 7.4.0 through 7.4.3.111, and Liferay DXP 2023.Q4 before patch 6, 2023.Q3 before patch 9, and 7.4 GA through update 92 allows remote attackers to inject arbitrary web script or HTML via a crafted payload injected into a Commerce Product's Name text field.
CVE-2025-43822 1 Liferay 2 Dxp, Portal 2025-10-08 N/A
Multiple stored cross-site scripting (XSS) vulnerabilities in Liferay Portal 7.4.3.15 through 7.4.3.111, and Liferay DXP 2023.Q4.0 through 2023.Q4.5, 2023.Q3.1 through 2023.Q3.8, and 7.4 update 15 through update 92 allow remote attackers to inject arbitrary web script or HTML via crafted payload injected into a Terms and Condition's Name text field to (1) Payment Terms, or (2) the Delivery Term on the view order page.
CVE-2025-11414 1 Gnu 1 Binutils 2025-10-08 3.3 Low
A vulnerability was determined in GNU Binutils 2.45. Affected by this vulnerability is the function get_link_hash_entry of the file bfd/elflink.c of the component Linker. This manipulation causes out-of-bounds read. The attack can only be executed locally. The exploit has been publicly disclosed and may be utilized. Upgrading to version 2.46 addresses this issue. Patch name: aeaaa9af6359c8e394ce9cf24911fec4f4d23703. It is advisable to upgrade the affected component.
CVE-2025-11413 1 Gnu 1 Binutils 2025-10-08 3.3 Low
A vulnerability was found in GNU Binutils 2.45. Affected is the function elf_link_add_object_symbols of the file bfd/elflink.c of the component Linker. The manipulation results in out-of-bounds read. The attack needs to be approached locally. The exploit has been made public and could be used. Upgrading to version 2.46 is able to address this issue. The patch is identified as 72efdf166aa0ed72ecc69fc2349af6591a7a19c0. Upgrading the affected component is advised.
CVE-2025-11412 1 Gnu 1 Binutils 2025-10-08 3.3 Low
A vulnerability has been found in GNU Binutils 2.45. This impacts the function bfd_elf_gc_record_vtentry of the file bfd/elflink.c of the component Linker. The manipulation leads to out-of-bounds read. Local access is required to approach this attack. The exploit has been disclosed to the public and may be used. The identifier of the patch is 047435dd988a3975d40c6626a8f739a0b2e154bc. To fix this issue, it is recommended to deploy a patch.
CVE-2025-45375 1 Dell 3 Data Domain Operating System, Powerprotect Data Domain, Powerprotect Dd 2025-10-08 4.4 Medium
Dell PowerProtect Data Domain with Data Domain Operating System (DD OS) of Feature Release versions 7.7.1.0 through 8.3.0.15, LTS2025 release version 8.3.1.0, LTS2024 release versions 7.13.1.0 through 7.13.1.30, LTS 2023 release versions 7.10.1.0 through 7.10.1.60, contain a Stack-based Buffer Overflow vulnerability. A high privileged attacker with local access could potentially exploit this vulnerability, leading to Denial of service.
CVE-2025-44823 1 Nagios 1 Log Server 2025-10-08 9.9 Critical
Nagios Log Server before 2024R1.3.2 allows authenticated users to retrieve cleartext administrative API keys via a /nagioslogserver/index.php/api/system/get_users call. This is GL:NLS#475.
CVE-2025-3448 1 Br-automation 1 Automation Runtime 2025-10-08 6.1 Medium
Reflected cross-site scripting (XSS) vulnerabilities exist in System Diagnostics Manager (SDM) of B&R Automation Runtime versions before 6.4 that enables a remote attacker to execute arbitrary JavaScript code in the context of the attacked user’s browser session
CVE-2023-53653 1 Linux 1 Linux Kernel 2025-10-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: amphion: fix REVERSE_INULL issues reported by coverity null-checking of a pointor is suggested before dereferencing it
CVE-2025-56243 1 Puneethreddyhc 1 Event Management 2025-10-08 6.1 Medium
A Cross-Site Scripting (XSS) vulnerability was found in the register.php page of PuneethReddyHC Event Management System 1.0, where the event_id GET parameter is improperly handled. An attacker can craft a malicious URL to execute arbitrary JavaScript in the victim s browser by injecting code into this parameter.
CVE-2025-36156 1 Ibm 1 Infosphere Data Replication 2025-10-08 7.4 High
IBM InfoSphere Data Replication VSAM for z/OS Remote Source 11.4 is vulnerable to a stack-based buffer overflow, caused by improper bounds checking. A local user with access to the files storing CECSUB or CECRM on the container could overflow the buffer and execute arbitrary code on the system.
CVE-2025-61670 1 Bytecodealliance 1 Wasmtime 2025-10-08 N/A
Wasmtime is a runtime for WebAssembly. Wasmtime 37.0.0 and 37.0.1 have memory leaks in the C/C++ API when using bindings for the `anyref` or `externref` WebAssembly values. This is caused by a regression introduced during the development of 37.0.0 and all prior versions of Wasmtime are unaffected. If `anyref` or `externref` is not used in the C/C++ API then embeddings are also unaffected by the leaky behavior. The `wasmtime` Rust crate is unaffected by this leak. Development of Wasmtime 37.0.0 included a refactoring in Rust of changing the old `ManuallyRooted<T>` type to a new `OwnedRooted<T>` type. This change was integrated into Wasmtime's C API but left the C API in a state which had memory leaks. Additionally the new ownership semantics around this type were not reflected into the C++ API, making it leak-prone. A short version of the change is that previously `ManuallyRooted<T>`, as the name implies, required manual calls to an "unroot" operation. If this was forgotten then the memory was still cleaned up when the `wasmtime_store_t` itself was destroyed eventually. Documentation of when to "unroot" was sparse and there were already situations prior to 37.0.0 where memory would be leaked until the store was destroyed anyway. All memory, though, was always bound by the store, and destroying the store would guarantee that there were no memory leaks. In migrating to `OwnedRooted<T>` the usage of the type in Rust changed. A manual "unroot" operation is no longer required and it happens naturally as a destructor of the `OwnedRooted<T>` type in Rust itself. These new resource ownership semantics were not fully integrated into the preexisting semantics of the C/C++ APIs in Wasmtime. A crucial distinction of `OwnedRooted<T>` vs `ManuallyRooted<T>` is that the `OwnedRooted<T>` type allocates host memory outside of the store. This means that if an `OwnedRooted<T>` is leaked then destroying a store does not release this memory and it's a permanent memory leak on the host. This led to a few distinct, but related, issues arising: A typo in the `wasmtime_val_unroot` function in the C API meant that it did not actually unroot anything. This meant that even if embedders faithfully call the function then memory will be leaked. If a host-defined function returned a `wasmtime_{externref,anyref}_t` value then the value was never unrooted. The C/C++ API no longer has access to the value and the Rust implementation did not unroot. This meant that any values returned this way were never unrooted. The goal of the C++ API of Wasmtime is to encode automatic memory management in the type system, but the C++ API was not updated when `OwnedRooted<T>` was added. This meant that idiomatic usage of the C++ API would leak memory due to a lack of destructors on values. These issues have all been fixed in a 37.0.2 release of Wasmtime. The implementation of the C and C++ APIs have been updated accordingly and respectively to account for the changes of ownership here. For example `wasmtime_val_unroot` has been fixed to unroot, the Rust-side implementation of calling an embedder-defined function will unroot return values, and the C++ API now has destructors on the `ExternRef`, `AnyRef`, and `Val` types. These changes have been made to the 37.0.x release branch in a non-API-breaking fashion. Changes to the 38.0.0 release branch (and `main` in the Wasmtime repository) include minor API updates to better accommodate the API semantic changes. The only known workaround at this time is to avoid using `externref` and `anyref` in the C/C++ API of Wasmtime. If avoiding those types is not possible then it's required for users to update to mitigate the leak issue.
CVE-2025-43909 1 Dell 4 Data Domain Operating System, Dd Boost, Powerprotect Data Domain and 1 more 2025-10-08 3.7 Low
Dell PowerProtect Data Domain with Data Domain Operating System (DD OS) of Feature Release versions 7.7.1.0 through 8.3.0.15, LTS2025 release version 8.3.1.0, LTS2024 release versions 7.13.1.0 through 7.13.1.30, LTS 2023 release versions 7.10.1.0 through 7.10.1.60, contain an Use of a Broken or Risky Cryptographic Algorithm vulnerability in the DD boost. An unauthenticated attacker with remote access could potentially exploit this vulnerability, leading to Information exposure.