| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/v3d: Assign job pointer to NULL before signaling the fence
In commit e4b5ccd392b9 ("drm/v3d: Ensure job pointer is set to NULL
after job completion"), we introduced a change to assign the job pointer
to NULL after completing a job, indicating job completion.
However, this approach created a race condition between the DRM
scheduler workqueue and the IRQ execution thread. As soon as the fence is
signaled in the IRQ execution thread, a new job starts to be executed.
This results in a race condition where the IRQ execution thread sets the
job pointer to NULL simultaneously as the `run_job()` function assigns
a new job to the pointer.
This race condition can lead to a NULL pointer dereference if the IRQ
execution thread sets the job pointer to NULL after `run_job()` assigns
it to the new job. When the new job completes and the GPU emits an
interrupt, `v3d_irq()` is triggered, potentially causing a crash.
[ 466.310099] Unable to handle kernel NULL pointer dereference at virtual address 00000000000000c0
[ 466.318928] Mem abort info:
[ 466.321723] ESR = 0x0000000096000005
[ 466.325479] EC = 0x25: DABT (current EL), IL = 32 bits
[ 466.330807] SET = 0, FnV = 0
[ 466.333864] EA = 0, S1PTW = 0
[ 466.337010] FSC = 0x05: level 1 translation fault
[ 466.341900] Data abort info:
[ 466.344783] ISV = 0, ISS = 0x00000005, ISS2 = 0x00000000
[ 466.350285] CM = 0, WnR = 0, TnD = 0, TagAccess = 0
[ 466.355350] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
[ 466.360677] user pgtable: 4k pages, 39-bit VAs, pgdp=0000000089772000
[ 466.367140] [00000000000000c0] pgd=0000000000000000, p4d=0000000000000000, pud=0000000000000000
[ 466.375875] Internal error: Oops: 0000000096000005 [#1] PREEMPT SMP
[ 466.382163] Modules linked in: rfcomm snd_seq_dummy snd_hrtimer snd_seq snd_seq_device algif_hash algif_skcipher af_alg bnep binfmt_misc vc4 snd_soc_hdmi_codec drm_display_helper cec brcmfmac_wcc spidev rpivid_hevc(C) drm_client_lib brcmfmac hci_uart drm_dma_helper pisp_be btbcm brcmutil snd_soc_core aes_ce_blk v4l2_mem2mem bluetooth aes_ce_cipher snd_compress videobuf2_dma_contig ghash_ce cfg80211 gf128mul snd_pcm_dmaengine videobuf2_memops ecdh_generic sha2_ce ecc videobuf2_v4l2 snd_pcm v3d sha256_arm64 rfkill videodev snd_timer sha1_ce libaes gpu_sched snd videobuf2_common sha1_generic drm_shmem_helper mc rp1_pio drm_kms_helper raspberrypi_hwmon spi_bcm2835 gpio_keys i2c_brcmstb rp1 raspberrypi_gpiomem rp1_mailbox rp1_adc nvmem_rmem uio_pdrv_genirq uio i2c_dev drm ledtrig_pattern drm_panel_orientation_quirks backlight fuse dm_mod ip_tables x_tables ipv6
[ 466.458429] CPU: 0 UID: 1000 PID: 2008 Comm: chromium Tainted: G C 6.13.0-v8+ #18
[ 466.467336] Tainted: [C]=CRAP
[ 466.470306] Hardware name: Raspberry Pi 5 Model B Rev 1.0 (DT)
[ 466.476157] pstate: 404000c9 (nZcv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 466.483143] pc : v3d_irq+0x118/0x2e0 [v3d]
[ 466.487258] lr : __handle_irq_event_percpu+0x60/0x228
[ 466.492327] sp : ffffffc080003ea0
[ 466.495646] x29: ffffffc080003ea0 x28: ffffff80c0c94200 x27: 0000000000000000
[ 466.502807] x26: ffffffd08dd81d7b x25: ffffff80c0c94200 x24: ffffff8003bdc200
[ 466.509969] x23: 0000000000000001 x22: 00000000000000a7 x21: 0000000000000000
[ 466.517130] x20: ffffff8041bb0000 x19: 0000000000000001 x18: 0000000000000000
[ 466.524291] x17: ffffffafadfb0000 x16: ffffffc080000000 x15: 0000000000000000
[ 466.531452] x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000000
[ 466.538613] x11: 0000000000000000 x10: 0000000000000000 x9 : ffffffd08c527eb0
[ 466.545777] x8 : 0000000000000000 x7 : 0000000000000000 x6 : 0000000000000000
[ 466.552941] x5 : ffffffd08c4100d0 x4 : ffffffafadfb0000 x3 : ffffffc080003f70
[ 466.560102] x2 : ffffffc0829e8058 x1 : 0000000000000001 x0 : 0000000000000000
[ 466.567263] Call trace:
[ 466.569711] v3d_irq+0x118/0x2e0 [v3d] (P)
[ 466.
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
vfio/platform: check the bounds of read/write syscalls
count and offset are passed from user space and not checked, only
offset is capped to 40 bits, which can be used to read/write out of
bounds of the device. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix bpf_sk_select_reuseport() memory leak
As pointed out in the original comment, lookup in sockmap can return a TCP
ESTABLISHED socket. Such TCP socket may have had SO_ATTACH_REUSEPORT_EBPF
set before it was ESTABLISHED. In other words, a non-NULL sk_reuseport_cb
does not imply a non-refcounted socket.
Drop sk's reference in both error paths.
unreferenced object 0xffff888101911800 (size 2048):
comm "test_progs", pid 44109, jiffies 4297131437
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
80 00 01 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace (crc 9336483b):
__kmalloc_noprof+0x3bf/0x560
__reuseport_alloc+0x1d/0x40
reuseport_alloc+0xca/0x150
reuseport_attach_prog+0x87/0x140
sk_reuseport_attach_bpf+0xc8/0x100
sk_setsockopt+0x1181/0x1990
do_sock_setsockopt+0x12b/0x160
__sys_setsockopt+0x7b/0xc0
__x64_sys_setsockopt+0x1b/0x30
do_syscall_64+0x93/0x180
entry_SYSCALL_64_after_hwframe+0x76/0x7e |
| In the Linux kernel, the following vulnerability has been resolved:
openvswitch: fix lockup on tx to unregistering netdev with carrier
Commit in a fixes tag attempted to fix the issue in the following
sequence of calls:
do_output
-> ovs_vport_send
-> dev_queue_xmit
-> __dev_queue_xmit
-> netdev_core_pick_tx
-> skb_tx_hash
When device is unregistering, the 'dev->real_num_tx_queues' goes to
zero and the 'while (unlikely(hash >= qcount))' loop inside the
'skb_tx_hash' becomes infinite, locking up the core forever.
But unfortunately, checking just the carrier status is not enough to
fix the issue, because some devices may still be in unregistering
state while reporting carrier status OK.
One example of such device is a net/dummy. It sets carrier ON
on start, but it doesn't implement .ndo_stop to set the carrier off.
And it makes sense, because dummy doesn't really have a carrier.
Therefore, while this device is unregistering, it's still easy to hit
the infinite loop in the skb_tx_hash() from the OVS datapath. There
might be other drivers that do the same, but dummy by itself is
important for the OVS ecosystem, because it is frequently used as a
packet sink for tcpdump while debugging OVS deployments. And when the
issue is hit, the only way to recover is to reboot.
Fix that by also checking if the device is running. The running
state is handled by the net core during unregistering, so it covers
unregistering case better, and we don't really need to send packets
to devices that are not running anyway.
While only checking the running state might be enough, the carrier
check is preserved. The running and the carrier states seem disjoined
throughout the code and different drivers. And other core functions
like __dev_direct_xmit() check both before attempting to transmit
a packet. So, it seems safer to check both flags in OVS as well. |
| In the Linux kernel, the following vulnerability has been resolved:
pktgen: Avoid out-of-bounds access in get_imix_entries
Passing a sufficient amount of imix entries leads to invalid access to the
pkt_dev->imix_entries array because of the incorrect boundary check.
UBSAN: array-index-out-of-bounds in net/core/pktgen.c:874:24
index 20 is out of range for type 'imix_pkt [20]'
CPU: 2 PID: 1210 Comm: bash Not tainted 6.10.0-rc1 #121
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996)
Call Trace:
<TASK>
dump_stack_lvl lib/dump_stack.c:117
__ubsan_handle_out_of_bounds lib/ubsan.c:429
get_imix_entries net/core/pktgen.c:874
pktgen_if_write net/core/pktgen.c:1063
pde_write fs/proc/inode.c:334
proc_reg_write fs/proc/inode.c:346
vfs_write fs/read_write.c:593
ksys_write fs/read_write.c:644
do_syscall_64 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe arch/x86/entry/entry_64.S:130
Found by Linux Verification Center (linuxtesting.org) with SVACE.
[ fp: allow to fill the array completely; minor changelog cleanup ] |
| In the Linux kernel, the following vulnerability has been resolved:
gtp: Destroy device along with udp socket's netns dismantle.
gtp_newlink() links the device to a list in dev_net(dev) instead of
src_net, where a udp tunnel socket is created.
Even when src_net is removed, the device stays alive on dev_net(dev).
Then, removing src_net triggers the splat below. [0]
In this example, gtp0 is created in ns2, and the udp socket is created
in ns1.
ip netns add ns1
ip netns add ns2
ip -n ns1 link add netns ns2 name gtp0 type gtp role sgsn
ip netns del ns1
Let's link the device to the socket's netns instead.
Now, gtp_net_exit_batch_rtnl() needs another netdev iteration to remove
all gtp devices in the netns.
[0]:
ref_tracker: net notrefcnt@000000003d6e7d05 has 1/2 users at
sk_alloc (./include/net/net_namespace.h:345 net/core/sock.c:2236)
inet_create (net/ipv4/af_inet.c:326 net/ipv4/af_inet.c:252)
__sock_create (net/socket.c:1558)
udp_sock_create4 (net/ipv4/udp_tunnel_core.c:18)
gtp_create_sock (./include/net/udp_tunnel.h:59 drivers/net/gtp.c:1423)
gtp_create_sockets (drivers/net/gtp.c:1447)
gtp_newlink (drivers/net/gtp.c:1507)
rtnl_newlink (net/core/rtnetlink.c:3786 net/core/rtnetlink.c:3897 net/core/rtnetlink.c:4012)
rtnetlink_rcv_msg (net/core/rtnetlink.c:6922)
netlink_rcv_skb (net/netlink/af_netlink.c:2542)
netlink_unicast (net/netlink/af_netlink.c:1321 net/netlink/af_netlink.c:1347)
netlink_sendmsg (net/netlink/af_netlink.c:1891)
____sys_sendmsg (net/socket.c:711 net/socket.c:726 net/socket.c:2583)
___sys_sendmsg (net/socket.c:2639)
__sys_sendmsg (net/socket.c:2669)
do_syscall_64 (arch/x86/entry/common.c:52 arch/x86/entry/common.c:83)
WARNING: CPU: 1 PID: 60 at lib/ref_tracker.c:179 ref_tracker_dir_exit (lib/ref_tracker.c:179)
Modules linked in:
CPU: 1 UID: 0 PID: 60 Comm: kworker/u16:2 Not tainted 6.13.0-rc5-00147-g4c1224501e9d #5
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
Workqueue: netns cleanup_net
RIP: 0010:ref_tracker_dir_exit (lib/ref_tracker.c:179)
Code: 00 00 00 fc ff df 4d 8b 26 49 bd 00 01 00 00 00 00 ad de 4c 39 f5 0f 85 df 00 00 00 48 8b 74 24 08 48 89 df e8 a5 cc 12 02 90 <0f> 0b 90 48 8d 6b 44 be 04 00 00 00 48 89 ef e8 80 de 67 ff 48 89
RSP: 0018:ff11000009a07b60 EFLAGS: 00010286
RAX: 0000000000002bd3 RBX: ff1100000f4e1aa0 RCX: 1ffffffff0e40ac6
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffffffff8423ee3c
RBP: ff1100000f4e1af0 R08: 0000000000000001 R09: fffffbfff0e395ae
R10: 0000000000000001 R11: 0000000000036001 R12: ff1100000f4e1af0
R13: dead000000000100 R14: ff1100000f4e1af0 R15: dffffc0000000000
FS: 0000000000000000(0000) GS:ff1100006ce80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f9b2464bd98 CR3: 0000000005286005 CR4: 0000000000771ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe07f0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
<TASK>
? __warn (kernel/panic.c:748)
? ref_tracker_dir_exit (lib/ref_tracker.c:179)
? report_bug (lib/bug.c:201 lib/bug.c:219)
? handle_bug (arch/x86/kernel/traps.c:285)
? exc_invalid_op (arch/x86/kernel/traps.c:309 (discriminator 1))
? asm_exc_invalid_op (./arch/x86/include/asm/idtentry.h:621)
? _raw_spin_unlock_irqrestore (./arch/x86/include/asm/irqflags.h:42 ./arch/x86/include/asm/irqflags.h:97 ./arch/x86/include/asm/irqflags.h:155 ./include/linux/spinlock_api_smp.h:151 kernel/locking/spinlock.c:194)
? ref_tracker_dir_exit (lib/ref_tracker.c:179)
? __pfx_ref_tracker_dir_exit (lib/ref_tracker.c:158)
? kfree (mm/slub.c:4613 mm/slub.c:4761)
net_free (net/core/net_namespace.c:476 net/core/net_namespace.c:467)
cleanup_net (net/core/net_namespace.c:664 (discriminator 3))
process_one_work (kernel/workqueue.c:3229)
worker_thread (kernel/workqueue.c:3304 kernel/workqueue.c:3391
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: Clear port select structure when fail to create
Clear the port select structure on error so no stale values left after
definers are destroyed. That's because the mlx5_lag_destroy_definers()
always try to destroy all lag definers in the tt_map, so in the flow
below lag definers get double-destroyed and cause kernel crash:
mlx5_lag_port_sel_create()
mlx5_lag_create_definers()
mlx5_lag_create_definer() <- Failed on tt 1
mlx5_lag_destroy_definers() <- definers[tt=0] gets destroyed
mlx5_lag_port_sel_create()
mlx5_lag_create_definers()
mlx5_lag_create_definer() <- Failed on tt 0
mlx5_lag_destroy_definers() <- definers[tt=0] gets double-destroyed
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000008
Mem abort info:
ESR = 0x0000000096000005
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x05: level 1 translation fault
Data abort info:
ISV = 0, ISS = 0x00000005, ISS2 = 0x00000000
CM = 0, WnR = 0, TnD = 0, TagAccess = 0
GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
user pgtable: 64k pages, 48-bit VAs, pgdp=0000000112ce2e00
[0000000000000008] pgd=0000000000000000, p4d=0000000000000000, pud=0000000000000000
Internal error: Oops: 0000000096000005 [#1] PREEMPT SMP
Modules linked in: iptable_raw bonding ip_gre ip6_gre gre ip6_tunnel tunnel6 geneve ip6_udp_tunnel udp_tunnel ipip tunnel4 ip_tunnel rdma_ucm(OE) rdma_cm(OE) iw_cm(OE) ib_ipoib(OE) ib_cm(OE) ib_umad(OE) mlx5_ib(OE) ib_uverbs(OE) mlx5_fwctl(OE) fwctl(OE) mlx5_core(OE) mlxdevm(OE) ib_core(OE) mlxfw(OE) memtrack(OE) mlx_compat(OE) openvswitch nsh nf_conncount psample xt_conntrack xt_MASQUERADE nf_conntrack_netlink nfnetlink xfrm_user xfrm_algo xt_addrtype iptable_filter iptable_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 br_netfilter bridge stp llc netconsole overlay efi_pstore sch_fq_codel zram ip_tables crct10dif_ce qemu_fw_cfg fuse ipv6 crc_ccitt [last unloaded: mlx_compat(OE)]
CPU: 3 UID: 0 PID: 217 Comm: kworker/u53:2 Tainted: G OE 6.11.0+ #2
Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE
Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015
Workqueue: mlx5_lag mlx5_do_bond_work [mlx5_core]
pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : mlx5_del_flow_rules+0x24/0x2c0 [mlx5_core]
lr : mlx5_lag_destroy_definer+0x54/0x100 [mlx5_core]
sp : ffff800085fafb00
x29: ffff800085fafb00 x28: ffff0000da0c8000 x27: 0000000000000000
x26: ffff0000da0c8000 x25: ffff0000da0c8000 x24: ffff0000da0c8000
x23: ffff0000c31f81a0 x22: 0400000000000000 x21: ffff0000da0c8000
x20: 0000000000000000 x19: 0000000000000001 x18: 0000000000000000
x17: 0000000000000000 x16: 0000000000000000 x15: 0000ffff8b0c9350
x14: 0000000000000000 x13: ffff800081390d18 x12: ffff800081dc3cc0
x11: 0000000000000001 x10: 0000000000000b10 x9 : ffff80007ab7304c
x8 : ffff0000d00711f0 x7 : 0000000000000004 x6 : 0000000000000190
x5 : ffff00027edb3010 x4 : 0000000000000000 x3 : 0000000000000000
x2 : ffff0000d39b8000 x1 : ffff0000d39b8000 x0 : 0400000000000000
Call trace:
mlx5_del_flow_rules+0x24/0x2c0 [mlx5_core]
mlx5_lag_destroy_definer+0x54/0x100 [mlx5_core]
mlx5_lag_destroy_definers+0xa0/0x108 [mlx5_core]
mlx5_lag_port_sel_create+0x2d4/0x6f8 [mlx5_core]
mlx5_activate_lag+0x60c/0x6f8 [mlx5_core]
mlx5_do_bond_work+0x284/0x5c8 [mlx5_core]
process_one_work+0x170/0x3e0
worker_thread+0x2d8/0x3e0
kthread+0x11c/0x128
ret_from_fork+0x10/0x20
Code: a9025bf5 aa0003f6 a90363f7 f90023f9 (f9400400)
---[ end trace 0000000000000000 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
zram: fix potential UAF of zram table
If zram_meta_alloc failed early, it frees allocated zram->table without
setting it NULL. Which will potentially cause zram_meta_free to access
the table if user reset an failed and uninitialized device. |
| In the Linux kernel, the following vulnerability has been resolved:
vsock/virtio: discard packets if the transport changes
If the socket has been de-assigned or assigned to another transport,
we must discard any packets received because they are not expected
and would cause issues when we access vsk->transport.
A possible scenario is described by Hyunwoo Kim in the attached link,
where after a first connect() interrupted by a signal, and a second
connect() failed, we can find `vsk->transport` at NULL, leading to a
NULL pointer dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
pmdomain: imx8mp-blk-ctrl: add missing loop break condition
Currently imx8mp_blk_ctrl_remove() will continue the for loop
until an out-of-bounds exception occurs.
pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : dev_pm_domain_detach+0x8/0x48
lr : imx8mp_blk_ctrl_shutdown+0x58/0x90
sp : ffffffc084f8bbf0
x29: ffffffc084f8bbf0 x28: ffffff80daf32ac0 x27: 0000000000000000
x26: ffffffc081658d78 x25: 0000000000000001 x24: ffffffc08201b028
x23: ffffff80d0db9490 x22: ffffffc082340a78 x21: 00000000000005b0
x20: ffffff80d19bc180 x19: 000000000000000a x18: ffffffffffffffff
x17: ffffffc080a39e08 x16: ffffffc080a39c98 x15: 4f435f464f006c72
x14: 0000000000000004 x13: ffffff80d0172110 x12: 0000000000000000
x11: ffffff80d0537740 x10: ffffff80d05376c0 x9 : ffffffc0808ed2d8
x8 : ffffffc084f8bab0 x7 : 0000000000000000 x6 : 0000000000000000
x5 : ffffff80d19b9420 x4 : fffffffe03466e60 x3 : 0000000080800077
x2 : 0000000000000000 x1 : 0000000000000001 x0 : 0000000000000000
Call trace:
dev_pm_domain_detach+0x8/0x48
platform_shutdown+0x2c/0x48
device_shutdown+0x158/0x268
kernel_restart_prepare+0x40/0x58
kernel_kexec+0x58/0xe8
__do_sys_reboot+0x198/0x258
__arm64_sys_reboot+0x2c/0x40
invoke_syscall+0x5c/0x138
el0_svc_common.constprop.0+0x48/0xf0
do_el0_svc+0x24/0x38
el0_svc+0x38/0xc8
el0t_64_sync_handler+0x120/0x130
el0t_64_sync+0x190/0x198
Code: 8128c2d0 ffffffc0 aa1e03e9 d503201f |
| In the Linux kernel, the following vulnerability has been resolved:
iomap: avoid avoid truncating 64-bit offset to 32 bits
on 32-bit kernels, iomap_write_delalloc_scan() was inadvertently using a
32-bit position due to folio_next_index() returning an unsigned long.
This could lead to an infinite loop when writing to an xfs filesystem. |
| In the Linux kernel, the following vulnerability has been resolved:
vsock: prevent null-ptr-deref in vsock_*[has_data|has_space]
Recent reports have shown how we sometimes call vsock_*_has_data()
when a vsock socket has been de-assigned from a transport (see attached
links), but we shouldn't.
Previous commits should have solved the real problems, but we may have
more in the future, so to avoid null-ptr-deref, we can return 0
(no space, no data available) but with a warning.
This way the code should continue to run in a nearly consistent state
and have a warning that allows us to debug future problems. |
| In the Linux kernel, the following vulnerability has been resolved:
filemap: avoid truncating 64-bit offset to 32 bits
On 32-bit kernels, folio_seek_hole_data() was inadvertently truncating a
64-bit value to 32 bits, leading to a possible infinite loop when writing
to an xfs filesystem. |
| In the Linux kernel, the following vulnerability has been resolved:
dm thin: make get_first_thin use rcu-safe list first function
The documentation in rculist.h explains the absence of list_empty_rcu()
and cautions programmers against relying on a list_empty() ->
list_first() sequence in RCU safe code. This is because each of these
functions performs its own READ_ONCE() of the list head. This can lead
to a situation where the list_empty() sees a valid list entry, but the
subsequent list_first() sees a different view of list head state after a
modification.
In the case of dm-thin, this author had a production box crash from a GP
fault in the process_deferred_bios path. This function saw a valid list
head in get_first_thin() but when it subsequently dereferenced that and
turned it into a thin_c, it got the inside of the struct pool, since the
list was now empty and referring to itself. The kernel on which this
occurred printed both a warning about a refcount_t being saturated, and
a UBSAN error for an out-of-bounds cpuid access in the queued spinlock,
prior to the fault itself. When the resulting kdump was examined, it
was possible to see another thread patiently waiting in thin_dtr's
synchronize_rcu.
The thin_dtr call managed to pull the thin_c out of the active thins
list (and have it be the last entry in the active_thins list) at just
the wrong moment which lead to this crash.
Fortunately, the fix here is straight forward. Switch get_first_thin()
function to use list_first_or_null_rcu() which performs just a single
READ_ONCE() and returns NULL if the list is already empty.
This was run against the devicemapper test suite's thin-provisioning
suites for delete and suspend and no regressions were observed. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: Fix variable not being completed when function returns
When cmd_alloc_index(), fails cmd_work_handler() needs
to complete ent->slotted before returning early.
Otherwise the task which issued the command may hang:
mlx5_core 0000:01:00.0: cmd_work_handler:877:(pid 3880418): failed to allocate command entry
INFO: task kworker/13:2:4055883 blocked for more than 120 seconds.
Not tainted 4.19.90-25.44.v2101.ky10.aarch64 #1
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
kworker/13:2 D 0 4055883 2 0x00000228
Workqueue: events mlx5e_tx_dim_work [mlx5_core]
Call trace:
__switch_to+0xe8/0x150
__schedule+0x2a8/0x9b8
schedule+0x2c/0x88
schedule_timeout+0x204/0x478
wait_for_common+0x154/0x250
wait_for_completion+0x28/0x38
cmd_exec+0x7a0/0xa00 [mlx5_core]
mlx5_cmd_exec+0x54/0x80 [mlx5_core]
mlx5_core_modify_cq+0x6c/0x80 [mlx5_core]
mlx5_core_modify_cq_moderation+0xa0/0xb8 [mlx5_core]
mlx5e_tx_dim_work+0x54/0x68 [mlx5_core]
process_one_work+0x1b0/0x448
worker_thread+0x54/0x468
kthread+0x134/0x138
ret_from_fork+0x10/0x18 |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix unexpectedly changed path in ksmbd_vfs_kern_path_locked
When `ksmbd_vfs_kern_path_locked` met an error and it is not the last
entry, it will exit without restoring changed path buffer. But later this
buffer may be used as the filename for creation. |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring/eventfd: ensure io_eventfd_signal() defers another RCU period
io_eventfd_do_signal() is invoked from an RCU callback, but when
dropping the reference to the io_ev_fd, it calls io_eventfd_free()
directly if the refcount drops to zero. This isn't correct, as any
potential freeing of the io_ev_fd should be deferred another RCU grace
period.
Just call io_eventfd_put() rather than open-code the dec-and-test and
free, which will correctly defer it another RCU grace period. |
| In the Linux kernel, the following vulnerability has been resolved:
net_sched: cls_flow: validate TCA_FLOW_RSHIFT attribute
syzbot found that TCA_FLOW_RSHIFT attribute was not validated.
Right shitfing a 32bit integer is undefined for large shift values.
UBSAN: shift-out-of-bounds in net/sched/cls_flow.c:329:23
shift exponent 9445 is too large for 32-bit type 'u32' (aka 'unsigned int')
CPU: 1 UID: 0 PID: 54 Comm: kworker/u8:3 Not tainted 6.13.0-rc3-syzkaller-00180-g4f619d518db9 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
Workqueue: ipv6_addrconf addrconf_dad_work
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
ubsan_epilogue lib/ubsan.c:231 [inline]
__ubsan_handle_shift_out_of_bounds+0x3c8/0x420 lib/ubsan.c:468
flow_classify+0x24d5/0x25b0 net/sched/cls_flow.c:329
tc_classify include/net/tc_wrapper.h:197 [inline]
__tcf_classify net/sched/cls_api.c:1771 [inline]
tcf_classify+0x420/0x1160 net/sched/cls_api.c:1867
sfb_classify net/sched/sch_sfb.c:260 [inline]
sfb_enqueue+0x3ad/0x18b0 net/sched/sch_sfb.c:318
dev_qdisc_enqueue+0x4b/0x290 net/core/dev.c:3793
__dev_xmit_skb net/core/dev.c:3889 [inline]
__dev_queue_xmit+0xf0e/0x3f50 net/core/dev.c:4400
dev_queue_xmit include/linux/netdevice.h:3168 [inline]
neigh_hh_output include/net/neighbour.h:523 [inline]
neigh_output include/net/neighbour.h:537 [inline]
ip_finish_output2+0xd41/0x1390 net/ipv4/ip_output.c:236
iptunnel_xmit+0x55d/0x9b0 net/ipv4/ip_tunnel_core.c:82
udp_tunnel_xmit_skb+0x262/0x3b0 net/ipv4/udp_tunnel_core.c:173
geneve_xmit_skb drivers/net/geneve.c:916 [inline]
geneve_xmit+0x21dc/0x2d00 drivers/net/geneve.c:1039
__netdev_start_xmit include/linux/netdevice.h:5002 [inline]
netdev_start_xmit include/linux/netdevice.h:5011 [inline]
xmit_one net/core/dev.c:3590 [inline]
dev_hard_start_xmit+0x27a/0x7d0 net/core/dev.c:3606
__dev_queue_xmit+0x1b73/0x3f50 net/core/dev.c:4434 |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: conntrack: clamp maximum hashtable size to INT_MAX
Use INT_MAX as maximum size for the conntrack hashtable. Otherwise, it
is possible to hit WARN_ON_ONCE in __kvmalloc_node_noprof() when
resizing hashtable because __GFP_NOWARN is unset. See:
0708a0afe291 ("mm: Consider __GFP_NOWARN flag for oversized kvmalloc() calls")
Note: hashtable resize is only possible from init_netns. |
| In the Linux kernel, the following vulnerability has been resolved:
sched: sch_cake: add bounds checks to host bulk flow fairness counts
Even though we fixed a logic error in the commit cited below, syzbot
still managed to trigger an underflow of the per-host bulk flow
counters, leading to an out of bounds memory access.
To avoid any such logic errors causing out of bounds memory accesses,
this commit factors out all accesses to the per-host bulk flow counters
to a series of helpers that perform bounds-checking before any
increments and decrements. This also has the benefit of improving
readability by moving the conditional checks for the flow mode into
these helpers, instead of having them spread out throughout the
code (which was the cause of the original logic error).
As part of this change, the flow quantum calculation is consolidated
into a helper function, which means that the dithering applied to the
ost load scaling is now applied both in the DRR rotation and when a
sparse flow's quantum is first initiated. The only user-visible effect
of this is that the maximum packet size that can be sent while a flow
stays sparse will now vary with +/- one byte in some cases. This should
not make a noticeable difference in practice, and thus it's not worth
complicating the code to preserve the old behaviour. |