| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix race when deleting quota root from the dirty cow roots list
When disabling quotas we are deleting the quota root from the list
fs_info->dirty_cowonly_roots without taking the lock that protects it,
which is struct btrfs_fs_info::trans_lock. This unsynchronized list
manipulation may cause chaos if there's another concurrent manipulation
of this list, such as when adding a root to it with
ctree.c:add_root_to_dirty_list().
This can result in all sorts of weird failures caused by a race, such as
the following crash:
[337571.278245] general protection fault, probably for non-canonical address 0xdead000000000108: 0000 [#1] PREEMPT SMP PTI
[337571.278933] CPU: 1 PID: 115447 Comm: btrfs Tainted: G W 6.4.0-rc6-btrfs-next-134+ #1
[337571.279153] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[337571.279572] RIP: 0010:commit_cowonly_roots+0x11f/0x250 [btrfs]
[337571.279928] Code: 85 38 06 00 (...)
[337571.280363] RSP: 0018:ffff9f63446efba0 EFLAGS: 00010206
[337571.280582] RAX: ffff942d98ec2638 RBX: ffff9430b82b4c30 RCX: 0000000449e1c000
[337571.280798] RDX: dead000000000100 RSI: ffff9430021e4900 RDI: 0000000000036070
[337571.281015] RBP: ffff942d98ec2000 R08: ffff942d98ec2000 R09: 000000000000015b
[337571.281254] R10: 0000000000000009 R11: 0000000000000001 R12: ffff942fe8fbf600
[337571.281476] R13: ffff942dabe23040 R14: ffff942dabe20800 R15: ffff942d92cf3b48
[337571.281723] FS: 00007f478adb7340(0000) GS:ffff94349fa40000(0000) knlGS:0000000000000000
[337571.281950] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[337571.282184] CR2: 00007f478ab9a3d5 CR3: 000000001e02c001 CR4: 0000000000370ee0
[337571.282416] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[337571.282647] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[337571.282874] Call Trace:
[337571.283101] <TASK>
[337571.283327] ? __die_body+0x1b/0x60
[337571.283570] ? die_addr+0x39/0x60
[337571.283796] ? exc_general_protection+0x22e/0x430
[337571.284022] ? asm_exc_general_protection+0x22/0x30
[337571.284251] ? commit_cowonly_roots+0x11f/0x250 [btrfs]
[337571.284531] btrfs_commit_transaction+0x42e/0xf90 [btrfs]
[337571.284803] ? _raw_spin_unlock+0x15/0x30
[337571.285031] ? release_extent_buffer+0x103/0x130 [btrfs]
[337571.285305] reset_balance_state+0x152/0x1b0 [btrfs]
[337571.285578] btrfs_balance+0xa50/0x11e0 [btrfs]
[337571.285864] ? __kmem_cache_alloc_node+0x14a/0x410
[337571.286086] btrfs_ioctl+0x249a/0x3320 [btrfs]
[337571.286358] ? mod_objcg_state+0xd2/0x360
[337571.286577] ? refill_obj_stock+0xb0/0x160
[337571.286798] ? seq_release+0x25/0x30
[337571.287016] ? __rseq_handle_notify_resume+0x3ba/0x4b0
[337571.287235] ? percpu_counter_add_batch+0x2e/0xa0
[337571.287455] ? __x64_sys_ioctl+0x88/0xc0
[337571.287675] __x64_sys_ioctl+0x88/0xc0
[337571.287901] do_syscall_64+0x38/0x90
[337571.288126] entry_SYSCALL_64_after_hwframe+0x72/0xdc
[337571.288352] RIP: 0033:0x7f478aaffe9b
So fix this by locking struct btrfs_fs_info::trans_lock before deleting
the quota root from that list. |
| In the Linux kernel, the following vulnerability has been resolved:
thermal: of: fix double-free on unregistration
Since commit 3d439b1a2ad3 ("thermal/core: Alloc-copy-free the thermal
zone parameters structure"), thermal_zone_device_register() allocates
a copy of the tzp argument and frees it when unregistering, so
thermal_of_zone_register() now ends up leaking its original tzp and
double-freeing the tzp copy. Fix this by locating tzp on stack instead. |
| In the Linux kernel, the following vulnerability has been resolved:
net/ieee802154: don't warn zero-sized raw_sendmsg()
syzbot is hitting skb_assert_len() warning at __dev_queue_xmit() [1],
for PF_IEEE802154 socket's zero-sized raw_sendmsg() request is hitting
__dev_queue_xmit() with skb->len == 0.
Since PF_IEEE802154 socket's zero-sized raw_sendmsg() request was
able to return 0, don't call __dev_queue_xmit() if packet length is 0.
----------
#include <sys/socket.h>
#include <netinet/in.h>
int main(int argc, char *argv[])
{
struct sockaddr_in addr = { .sin_family = AF_INET, .sin_addr.s_addr = htonl(INADDR_LOOPBACK) };
struct iovec iov = { };
struct msghdr hdr = { .msg_name = &addr, .msg_namelen = sizeof(addr), .msg_iov = &iov, .msg_iovlen = 1 };
sendmsg(socket(PF_IEEE802154, SOCK_RAW, 0), &hdr, 0);
return 0;
}
----------
Note that this might be a sign that commit fd1894224407c484 ("bpf: Don't
redirect packets with invalid pkt_len") should be reverted, for
skb->len == 0 was acceptable for at least PF_IEEE802154 socket. |
| The Print Invoice & Delivery Notes for WooCommerce plugin for WordPress is vulnerable to Remote Code Execution in all versions up to, and including, 5.8.0 via the 'WooCommerce_Delivery_Notes::update' function. This is due to missing capability check in the 'WooCommerce_Delivery_Notes::update' function, PHP enabled in Dompdf, and missing escape in the 'template.php' file. This makes it possible for unauthenticated attackers to execute code on the server. |
| OpenXRechnungToolbox through 2024-10-05-3.0.0 before 6c50e89 allows XXE because the disallow-doctype-decl feature is not enabled in visualization/VisualizerImpl.java. |
| Cross-site Scripting vulnerability in Hitachi Infrastructure Analytics Advisor (Data Center Analytics component) and Hitachi Ops Center Analyzer (Hitachi Ops Center Analyzer detail view component).This issue affects Hitachi Infrastructure Analytics Advisor:; Hitachi Ops Center Analyzer: from 10.0.0-00 before 11.0.5-00. |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/64s: Fix VAS mm use after free
The refcount on mm is dropped before the coprocessor is detached. |
| In the Linux kernel, the following vulnerability has been resolved:
can: j1939: j1939_tp_tx_dat_new(): fix out-of-bounds memory access
In the j1939_tp_tx_dat_new() function, an out-of-bounds memory access
could occur during the memcpy() operation if the size of skb->cb is
larger than the size of struct j1939_sk_buff_cb. This is because the
memcpy() operation uses the size of skb->cb, leading to a read beyond
the struct j1939_sk_buff_cb.
Updated the memcpy() operation to use the size of struct
j1939_sk_buff_cb instead of the size of skb->cb. This ensures that the
memcpy() operation only reads the memory within the bounds of struct
j1939_sk_buff_cb, preventing out-of-bounds memory access.
Additionally, add a BUILD_BUG_ON() to check that the size of skb->cb
is greater than or equal to the size of struct j1939_sk_buff_cb. This
ensures that the skb->cb buffer is large enough to hold the
j1939_sk_buff_cb structure.
[mkl: rephrase commit message] |
| In the Linux kernel, the following vulnerability has been resolved:
ice: prevent NULL pointer deref during reload
Calling ethtool during reload can lead to call trace, because VSI isn't
configured for some time, but netdev is alive.
To fix it add rtnl lock for VSI deconfig and config. Set ::num_q_vectors
to 0 after freeing and add a check for ::tx/rx_rings in ring related
ethtool ops.
Add proper unroll of filters in ice_start_eth().
Reproduction:
$watch -n 0.1 -d 'ethtool -g enp24s0f0np0'
$devlink dev reload pci/0000:18:00.0 action driver_reinit
Call trace before fix:
[66303.926205] BUG: kernel NULL pointer dereference, address: 0000000000000000
[66303.926259] #PF: supervisor read access in kernel mode
[66303.926286] #PF: error_code(0x0000) - not-present page
[66303.926311] PGD 0 P4D 0
[66303.926332] Oops: 0000 [#1] PREEMPT SMP PTI
[66303.926358] CPU: 4 PID: 933821 Comm: ethtool Kdump: loaded Tainted: G OE 6.4.0-rc5+ #1
[66303.926400] Hardware name: Intel Corporation S2600WFT/S2600WFT, BIOS SE5C620.86B.00.01.0014.070920180847 07/09/2018
[66303.926446] RIP: 0010:ice_get_ringparam+0x22/0x50 [ice]
[66303.926649] Code: 90 90 90 90 90 90 90 90 f3 0f 1e fa 0f 1f 44 00 00 48 8b 87 c0 09 00 00 c7 46 04 e0 1f 00 00 c7 46 10 e0 1f 00 00 48 8b 50 20 <48> 8b 12 0f b7 52 3a 89 56 14 48 8b 40 28 48 8b 00 0f b7 40 58 48
[66303.926722] RSP: 0018:ffffad40472f39c8 EFLAGS: 00010246
[66303.926749] RAX: ffff98a8ada05828 RBX: ffff98a8c46dd060 RCX: ffffad40472f3b48
[66303.926781] RDX: 0000000000000000 RSI: ffff98a8c46dd068 RDI: ffff98a8b23c4000
[66303.926811] RBP: ffffad40472f3b48 R08: 00000000000337b0 R09: 0000000000000000
[66303.926843] R10: 0000000000000001 R11: 0000000000000100 R12: ffff98a8b23c4000
[66303.926874] R13: ffff98a8c46dd060 R14: 000000000000000f R15: ffffad40472f3a50
[66303.926906] FS: 00007f6397966740(0000) GS:ffff98b390900000(0000) knlGS:0000000000000000
[66303.926941] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[66303.926967] CR2: 0000000000000000 CR3: 000000011ac20002 CR4: 00000000007706e0
[66303.926999] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[66303.927029] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[66303.927060] PKRU: 55555554
[66303.927075] Call Trace:
[66303.927094] <TASK>
[66303.927111] ? __die+0x23/0x70
[66303.927140] ? page_fault_oops+0x171/0x4e0
[66303.927176] ? exc_page_fault+0x7f/0x180
[66303.927209] ? asm_exc_page_fault+0x26/0x30
[66303.927244] ? ice_get_ringparam+0x22/0x50 [ice]
[66303.927433] rings_prepare_data+0x62/0x80
[66303.927469] ethnl_default_doit+0xe2/0x350
[66303.927501] genl_family_rcv_msg_doit.isra.0+0xe3/0x140
[66303.927538] genl_rcv_msg+0x1b1/0x2c0
[66303.927561] ? __pfx_ethnl_default_doit+0x10/0x10
[66303.927590] ? __pfx_genl_rcv_msg+0x10/0x10
[66303.927615] netlink_rcv_skb+0x58/0x110
[66303.927644] genl_rcv+0x28/0x40
[66303.927665] netlink_unicast+0x19e/0x290
[66303.927691] netlink_sendmsg+0x254/0x4d0
[66303.927717] sock_sendmsg+0x93/0xa0
[66303.927743] __sys_sendto+0x126/0x170
[66303.927780] __x64_sys_sendto+0x24/0x30
[66303.928593] do_syscall_64+0x5d/0x90
[66303.929370] ? __count_memcg_events+0x60/0xa0
[66303.930146] ? count_memcg_events.constprop.0+0x1a/0x30
[66303.930920] ? handle_mm_fault+0x9e/0x350
[66303.931688] ? do_user_addr_fault+0x258/0x740
[66303.932452] ? exc_page_fault+0x7f/0x180
[66303.933193] entry_SYSCALL_64_after_hwframe+0x72/0xdc |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: rtl8xxxu: Fix memory leaks with RTL8723BU, RTL8192EU
The wifi + bluetooth combo chip RTL8723BU can leak memory (especially?)
when it's connected to a bluetooth audio device. The busy bluetooth
traffic generates lots of C2H (card to host) messages, which are not
freed correctly.
To fix this, move the dev_kfree_skb() call in rtl8xxxu_c2hcmd_callback()
inside the loop where skb_dequeue() is called.
The RTL8192EU leaks memory because the C2H messages are added to the
queue and left there forever. (This was fine in the past because it
probably wasn't sending any C2H messages until commit e542e66b7c2e
("wifi: rtl8xxxu: gen2: Turn on the rate control"). Since that commit
it sends a C2H message when the TX rate changes.)
To fix this, delete the check for rf_paths > 1 and the goto. Let the
function process the C2H messages from RTL8192EU like the ones from
the other chips.
Theoretically the RTL8188FU could also leak like RTL8723BU, but it
most likely doesn't send C2H messages frequently enough.
This change was tested with RTL8723BU by Erhard F. I tested it with
RTL8188FU and RTL8192EU. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: fix underflow in chain reference counter
Set element addition error path decrements reference counter on chains
twice: once on element release and again via nft_data_release().
Then, d6b478666ffa ("netfilter: nf_tables: fix underflow in object
reference counter") incorrectly fixed this by removing the stateful
object reference count decrement.
Restore the stateful object decrement as in b91d90368837 ("netfilter:
nf_tables: fix leaking object reference count") and let
nft_data_release() decrement the chain reference counter, so this is
done only once. |
| In the Linux kernel, the following vulnerability has been resolved:
vdpa: Add queue index attr to vdpa_nl_policy for nlattr length check
The vdpa_nl_policy structure is used to validate the nlattr when parsing
the incoming nlmsg. It will ensure the attribute being described produces
a valid nlattr pointer in info->attrs before entering into each handler
in vdpa_nl_ops.
That is to say, the missing part in vdpa_nl_policy may lead to illegal
nlattr after parsing, which could lead to OOB read just like CVE-2023-3773.
This patch adds the missing nla_policy for vdpa queue index attr to avoid
such bugs. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/rxe: Fix the error "trying to register non-static key in rxe_cleanup_task"
In the function rxe_create_qp(), rxe_qp_from_init() is called to
initialize qp, internally things like rxe_init_task are not setup until
rxe_qp_init_req().
If an error occurred before this point then the unwind will call
rxe_cleanup() and eventually to rxe_qp_do_cleanup()/rxe_cleanup_task()
which will oops when trying to access the uninitialized spinlock.
If rxe_init_task is not executed, rxe_cleanup_task will not be called. |
| In the Linux kernel, the following vulnerability has been resolved:
opp: Fix use-after-free in lazy_opp_tables after probe deferral
When dev_pm_opp_of_find_icc_paths() in _allocate_opp_table() returns
-EPROBE_DEFER, the opp_table is freed again, to wait until all the
interconnect paths are available.
However, if the OPP table is using required-opps then it may already
have been added to the global lazy_opp_tables list. The error path
does not remove the opp_table from the list again.
This can cause crashes later when the provider of the required-opps
is added, since we will iterate over OPP tables that have already been
freed. E.g.:
Unable to handle kernel NULL pointer dereference when read
CPU: 0 PID: 7 Comm: kworker/0:0 Not tainted 6.4.0-rc3
PC is at _of_add_opp_table_v2 (include/linux/of.h:949
drivers/opp/of.c:98 drivers/opp/of.c:344 drivers/opp/of.c:404
drivers/opp/of.c:1032) -> lazy_link_required_opp_table()
Fix this by calling _of_clear_opp_table() to remove the opp_table from
the list and clear other allocated resources. While at it, also add the
missing mutex_destroy() calls in the error path. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: rsi: Do not configure WoWlan in shutdown hook if not enabled
In case WoWlan was never configured during the operation of the system,
the hw->wiphy->wowlan_config will be NULL. rsi_config_wowlan() checks
whether wowlan_config is non-NULL and if it is not, then WARNs about it.
The warning is valid, as during normal operation the rsi_config_wowlan()
should only ever be called with non-NULL wowlan_config. In shutdown this
rsi_config_wowlan() should only ever be called if WoWlan was configured
before by the user.
Add checks for non-NULL wowlan_config into the shutdown hook. While at it,
check whether the wiphy is also non-NULL before accessing wowlan_config .
Drop the single-use wowlan_config variable, just inline it into function
call. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: Destroy target device if coalesced MMIO unregistration fails
Destroy and free the target coalesced MMIO device if unregistering said
device fails. As clearly noted in the code, kvm_io_bus_unregister_dev()
does not destroy the target device.
BUG: memory leak
unreferenced object 0xffff888112a54880 (size 64):
comm "syz-executor.2", pid 5258, jiffies 4297861402 (age 14.129s)
hex dump (first 32 bytes):
38 c7 67 15 00 c9 ff ff 38 c7 67 15 00 c9 ff ff 8.g.....8.g.....
e0 c7 e1 83 ff ff ff ff 00 30 67 15 00 c9 ff ff .........0g.....
backtrace:
[<0000000006995a8a>] kmalloc include/linux/slab.h:556 [inline]
[<0000000006995a8a>] kzalloc include/linux/slab.h:690 [inline]
[<0000000006995a8a>] kvm_vm_ioctl_register_coalesced_mmio+0x8e/0x3d0 arch/x86/kvm/../../../virt/kvm/coalesced_mmio.c:150
[<00000000022550c2>] kvm_vm_ioctl+0x47d/0x1600 arch/x86/kvm/../../../virt/kvm/kvm_main.c:3323
[<000000008a75102f>] vfs_ioctl fs/ioctl.c:46 [inline]
[<000000008a75102f>] file_ioctl fs/ioctl.c:509 [inline]
[<000000008a75102f>] do_vfs_ioctl+0xbab/0x1160 fs/ioctl.c:696
[<0000000080e3f669>] ksys_ioctl+0x76/0xa0 fs/ioctl.c:713
[<0000000059ef4888>] __do_sys_ioctl fs/ioctl.c:720 [inline]
[<0000000059ef4888>] __se_sys_ioctl fs/ioctl.c:718 [inline]
[<0000000059ef4888>] __x64_sys_ioctl+0x6f/0xb0 fs/ioctl.c:718
[<000000006444fa05>] do_syscall_64+0x9f/0x4e0 arch/x86/entry/common.c:290
[<000000009a4ed50b>] entry_SYSCALL_64_after_hwframe+0x49/0xbe
BUG: leak checking failed |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: usb-audio: Fix potential memory leaks at error path for UMP open
The allocation and initialization errors at alloc_midi_urbs() that is
called at MIDI 2.0 / UMP device are supposed to be handled at the
caller side by invoking free_midi_urbs(). However, free_midi_urbs()
loops only for ep->num_urbs entries, and since ep->num_entries wasn't
updated yet at the allocation / init error in alloc_midi_urbs(), this
entry won't be released.
The intention of free_midi_urbs() is to release the whole elements, so
change the loop size to NUM_URBS to scan over all elements for fixing
the missed releases.
Also, the call of free_midi_urbs() is missing at
snd_usb_midi_v2_open(). Although it'll be released later at
reopen/close or disconnection, it's better to release immediately at
the error path. |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: sf-pdma: pdma_desc memory leak fix
Commit b2cc5c465c2c ("dmaengine: sf-pdma: Add multithread support for a
DMA channel") changed sf_pdma_prep_dma_memcpy() to unconditionally
allocate a new sf_pdma_desc each time it is called.
The driver previously recycled descs, by checking the in_use flag, only
allocating additional descs if the existing one was in use. This logic
was removed in commit b2cc5c465c2c ("dmaengine: sf-pdma: Add multithread
support for a DMA channel"), but sf_pdma_free_desc() was not changed to
handle the new behaviour.
As a result, each time sf_pdma_prep_dma_memcpy() is called, the previous
descriptor is leaked, over time leading to memory starvation:
unreferenced object 0xffffffe008447300 (size 192):
comm "irq/39-mchp_dsc", pid 343, jiffies 4294906910 (age 981.200s)
hex dump (first 32 bytes):
00 00 00 ff 00 00 00 00 b8 c1 00 00 00 00 00 00 ................
00 00 70 08 10 00 00 00 00 00 00 c0 00 00 00 00 ..p.............
backtrace:
[<00000000064a04f4>] kmemleak_alloc+0x1e/0x28
[<00000000018927a7>] kmem_cache_alloc+0x11e/0x178
[<000000002aea8d16>] sf_pdma_prep_dma_memcpy+0x40/0x112
Add the missing kfree() to sf_pdma_free_desc(), and remove the redundant
in_use flag. |
| In the Linux kernel, the following vulnerability has been resolved:
sched/psi: use kernfs polling functions for PSI trigger polling
Destroying psi trigger in cgroup_file_release causes UAF issues when
a cgroup is removed from under a polling process. This is happening
because cgroup removal causes a call to cgroup_file_release while the
actual file is still alive. Destroying the trigger at this point would
also destroy its waitqueue head and if there is still a polling process
on that file accessing the waitqueue, it will step on the freed pointer:
do_select
vfs_poll
do_rmdir
cgroup_rmdir
kernfs_drain_open_files
cgroup_file_release
cgroup_pressure_release
psi_trigger_destroy
wake_up_pollfree(&t->event_wait)
// vfs_poll is unblocked
synchronize_rcu
kfree(t)
poll_freewait -> UAF access to the trigger's waitqueue head
Patch [1] fixed this issue for epoll() case using wake_up_pollfree(),
however the same issue exists for synchronous poll() case.
The root cause of this issue is that the lifecycles of the psi trigger's
waitqueue and of the file associated with the trigger are different. Fix
this by using kernfs_generic_poll function when polling on cgroup-specific
psi triggers. It internally uses kernfs_open_node->poll waitqueue head
with its lifecycle tied to the file's lifecycle. This also renders the
fix in [1] obsolete, so revert it.
[1] commit c2dbe32d5db5 ("sched/psi: Fix use-after-free in ep_remove_wait_queue()") |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm/hdmi: Add missing check for alloc_ordered_workqueue
Add check for the return value of alloc_ordered_workqueue as it may return
NULL pointer and cause NULL pointer dereference in `hdmi_hdcp.c` and
`hdmi_hpd.c`.
Patchwork: https://patchwork.freedesktop.org/patch/517211/ |