| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
net: can: j1939: j1939_xtp_rx_rts_session_active(): deactivate session upon receiving the second rts
Since j1939_session_deactivate_activate_next() in j1939_tp_rxtimer() is
called only when the timer is enabled, we need to call
j1939_session_deactivate_activate_next() if we cancelled the timer.
Otherwise, refcount for j1939_session leaks, which will later appear as
| unregister_netdevice: waiting for vcan0 to become free. Usage count = 2.
problem. |
| In the Linux kernel, the following vulnerability has been resolved:
ip6_tunnel: use skb_vlan_inet_prepare() in __ip6_tnl_rcv()
Blamed commit did not take care of VLAN encapsulations
as spotted by syzbot [1].
Use skb_vlan_inet_prepare() instead of pskb_inet_may_pull().
[1]
BUG: KMSAN: uninit-value in __INET_ECN_decapsulate include/net/inet_ecn.h:253 [inline]
BUG: KMSAN: uninit-value in INET_ECN_decapsulate include/net/inet_ecn.h:275 [inline]
BUG: KMSAN: uninit-value in IP6_ECN_decapsulate+0x7a8/0x1fa0 include/net/inet_ecn.h:321
__INET_ECN_decapsulate include/net/inet_ecn.h:253 [inline]
INET_ECN_decapsulate include/net/inet_ecn.h:275 [inline]
IP6_ECN_decapsulate+0x7a8/0x1fa0 include/net/inet_ecn.h:321
ip6ip6_dscp_ecn_decapsulate+0x16f/0x1b0 net/ipv6/ip6_tunnel.c:729
__ip6_tnl_rcv+0xed9/0x1b50 net/ipv6/ip6_tunnel.c:860
ip6_tnl_rcv+0xc3/0x100 net/ipv6/ip6_tunnel.c:903
gre_rcv+0x1529/0x1b90 net/ipv6/ip6_gre.c:-1
ip6_protocol_deliver_rcu+0x1c89/0x2c60 net/ipv6/ip6_input.c:438
ip6_input_finish+0x1f4/0x4a0 net/ipv6/ip6_input.c:489
NF_HOOK include/linux/netfilter.h:318 [inline]
ip6_input+0x9c/0x330 net/ipv6/ip6_input.c:500
ip6_mc_input+0x7ca/0xc10 net/ipv6/ip6_input.c:590
dst_input include/net/dst.h:474 [inline]
ip6_rcv_finish+0x958/0x990 net/ipv6/ip6_input.c:79
NF_HOOK include/linux/netfilter.h:318 [inline]
ipv6_rcv+0xf1/0x3c0 net/ipv6/ip6_input.c:311
__netif_receive_skb_one_core net/core/dev.c:6139 [inline]
__netif_receive_skb+0x1df/0xac0 net/core/dev.c:6252
netif_receive_skb_internal net/core/dev.c:6338 [inline]
netif_receive_skb+0x57/0x630 net/core/dev.c:6397
tun_rx_batched+0x1df/0x980 drivers/net/tun.c:1485
tun_get_user+0x5c0e/0x6c60 drivers/net/tun.c:1953
tun_chr_write_iter+0x3e9/0x5c0 drivers/net/tun.c:1999
new_sync_write fs/read_write.c:593 [inline]
vfs_write+0xbe2/0x15d0 fs/read_write.c:686
ksys_write fs/read_write.c:738 [inline]
__do_sys_write fs/read_write.c:749 [inline]
__se_sys_write fs/read_write.c:746 [inline]
__x64_sys_write+0x1fb/0x4d0 fs/read_write.c:746
x64_sys_call+0x30ab/0x3e70 arch/x86/include/generated/asm/syscalls_64.h:2
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xd3/0xf80 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Uninit was created at:
slab_post_alloc_hook mm/slub.c:4960 [inline]
slab_alloc_node mm/slub.c:5263 [inline]
kmem_cache_alloc_node_noprof+0x9e7/0x17a0 mm/slub.c:5315
kmalloc_reserve+0x13c/0x4b0 net/core/skbuff.c:586
__alloc_skb+0x805/0x1040 net/core/skbuff.c:690
alloc_skb include/linux/skbuff.h:1383 [inline]
alloc_skb_with_frags+0xc5/0xa60 net/core/skbuff.c:6712
sock_alloc_send_pskb+0xacc/0xc60 net/core/sock.c:2995
tun_alloc_skb drivers/net/tun.c:1461 [inline]
tun_get_user+0x1142/0x6c60 drivers/net/tun.c:1794
tun_chr_write_iter+0x3e9/0x5c0 drivers/net/tun.c:1999
new_sync_write fs/read_write.c:593 [inline]
vfs_write+0xbe2/0x15d0 fs/read_write.c:686
ksys_write fs/read_write.c:738 [inline]
__do_sys_write fs/read_write.c:749 [inline]
__se_sys_write fs/read_write.c:746 [inline]
__x64_sys_write+0x1fb/0x4d0 fs/read_write.c:746
x64_sys_call+0x30ab/0x3e70 arch/x86/include/generated/asm/syscalls_64.h:2
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xd3/0xf80 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
CPU: 0 UID: 0 PID: 6465 Comm: syz.0.17 Not tainted syzkaller #0 PREEMPT(none)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/25/2025 |
| A vulnerability has been found in code-projects Online Examination System 1.0. Affected is an unknown function of the component Add Pages. Such manipulation leads to cross site scripting. The attack can be executed remotely. The exploit has been disclosed to the public and may be used. |
| Single Sign-On Portal System developed by WellChoose has a OS Command Injection vulnerability, allowing authenticated remote attackers to inject arbitrary OS commands and execute them on the server. |
| In the Linux kernel, the following vulnerability has been resolved:
gpiolib: fix race condition for gdev->srcu
If two drivers were calling gpiochip_add_data_with_key(), one may be
traversing the srcu-protected list in gpio_name_to_desc(), meanwhile
other has just added its gdev in gpiodev_add_to_list_unlocked().
This creates a non-mutexed and non-protected timeframe, when one
instance is dereferencing and using &gdev->srcu, before the other
has initialized it, resulting in crash:
[ 4.935481] Unable to handle kernel paging request at virtual address ffff800272bcc000
[ 4.943396] Mem abort info:
[ 4.943400] ESR = 0x0000000096000005
[ 4.943403] EC = 0x25: DABT (current EL), IL = 32 bits
[ 4.943407] SET = 0, FnV = 0
[ 4.943410] EA = 0, S1PTW = 0
[ 4.943413] FSC = 0x05: level 1 translation fault
[ 4.943416] Data abort info:
[ 4.943418] ISV = 0, ISS = 0x00000005, ISS2 = 0x00000000
[ 4.946220] CM = 0, WnR = 0, TnD = 0, TagAccess = 0
[ 4.955261] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
[ 4.955268] swapper pgtable: 4k pages, 48-bit VAs, pgdp=0000000038e6c000
[ 4.961449] [ffff800272bcc000] pgd=0000000000000000
[ 4.969203] , p4d=1000000039739003
[ 4.979730] , pud=0000000000000000
[ 4.980210] phandle (CPU): 0x0000005e, phandle (BE): 0x5e000000 for node "reset"
[ 4.991736] Internal error: Oops: 0000000096000005 [#1] PREEMPT SMP
...
[ 5.121359] pc : __srcu_read_lock+0x44/0x98
[ 5.131091] lr : gpio_name_to_desc+0x60/0x1a0
[ 5.153671] sp : ffff8000833bb430
[ 5.298440]
[ 5.298443] Call trace:
[ 5.298445] __srcu_read_lock+0x44/0x98
[ 5.309484] gpio_name_to_desc+0x60/0x1a0
[ 5.320692] gpiochip_add_data_with_key+0x488/0xf00
5.946419] ---[ end trace 0000000000000000 ]---
Move initialization code for gdev fields before it is added to
gpio_devices, with adjacent initialization code.
Adjust goto statements to reflect modified order of operations
[Bartosz: fixed a build issue, removed stray newline] |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: act_api: avoid dereferencing ERR_PTR in tcf_idrinfo_destroy
syzbot reported a crash in tc_act_in_hw() during netns teardown where
tcf_idrinfo_destroy() passed an ERR_PTR(-EBUSY) value as a tc_action
pointer, leading to an invalid dereference.
Guard against ERR_PTR entries when iterating the action IDR so teardown
does not call tc_act_in_hw() on an error pointer. |
| In the Linux kernel, the following vulnerability has been resolved:
nfsd: check that server is running in unlock_filesystem
If we are trying to unlock the filesystem via an administrative
interface and nfsd isn't running, it crashes the server. This
happens currently because nfsd4_revoke_states() access state
structures (eg., conf_id_hashtbl) that has been freed as a part
of the server shutdown.
[ 59.465072] Call trace:
[ 59.465308] nfsd4_revoke_states+0x1b4/0x898 [nfsd] (P)
[ 59.465830] write_unlock_fs+0x258/0x440 [nfsd]
[ 59.466278] nfsctl_transaction_write+0xb0/0x120 [nfsd]
[ 59.466780] vfs_write+0x1f0/0x938
[ 59.467088] ksys_write+0xfc/0x1f8
[ 59.467395] __arm64_sys_write+0x74/0xb8
[ 59.467746] invoke_syscall.constprop.0+0xdc/0x1e8
[ 59.468177] do_el0_svc+0x154/0x1d8
[ 59.468489] el0_svc+0x40/0xe0
[ 59.468767] el0t_64_sync_handler+0xa0/0xe8
[ 59.469138] el0t_64_sync+0x1ac/0x1b0
Ensure this can't happen by taking the nfsd_mutex and checking that
the server is still up, and then holding the mutex across the call to
nfsd4_revoke_states(). |
| In the Linux kernel, the following vulnerability has been resolved:
libceph: replace overzealous BUG_ON in osdmap_apply_incremental()
If the osdmap is (maliciously) corrupted such that the incremental
osdmap epoch is different from what is expected, there is no need to
BUG. Instead, just declare the incremental osdmap to be invalid. |
| In the Linux kernel, the following vulnerability has been resolved:
libceph: make free_choose_arg_map() resilient to partial allocation
free_choose_arg_map() may dereference a NULL pointer if its caller fails
after a partial allocation.
For example, in decode_choose_args(), if allocation of arg_map->args
fails, execution jumps to the fail label and free_choose_arg_map() is
called. Since arg_map->size is updated to a non-zero value before memory
allocation, free_choose_arg_map() will iterate over arg_map->args and
dereference a NULL pointer.
To prevent this potential NULL pointer dereference and make
free_choose_arg_map() more resilient, add checks for pointers before
iterating. |
| In the Linux kernel, the following vulnerability has been resolved:
libceph: return the handler error from mon_handle_auth_done()
Currently any error from ceph_auth_handle_reply_done() is propagated
via finish_auth() but isn't returned from mon_handle_auth_done(). This
results in higher layers learning that (despite the monitor considering
us to be successfully authenticated) something went wrong in the
authentication phase and reacting accordingly, but msgr2 still trying
to proceed with establishing the session in the background. In the
case of secure mode this can trigger a WARN in setup_crypto() and later
lead to a NULL pointer dereference inside of prepare_auth_signature(). |
| In the Linux kernel, the following vulnerability has been resolved:
idpf: Fix RSS LUT NULL ptr issue after soft reset
During soft reset, the RSS LUT is freed and not restored unless the
interface is up. If an ethtool command that accesses the rss lut is
attempted immediately after reset, it will result in NULL ptr
dereference. Also, there is no need to reset the rss lut if the soft reset
does not involve queue count change.
After soft reset, set the RSS LUT to default values based on the updated
queue count only if the reset was a result of a queue count change and
the LUT was not configured by the user. In all other cases, don't touch
the LUT.
Steps to reproduce:
** Bring the interface down (if up)
ifconfig eth1 down
** update the queue count (eg., 27->20)
ethtool -L eth1 combined 20
** display the RSS LUT
ethtool -x eth1
[82375.558338] BUG: kernel NULL pointer dereference, address: 0000000000000000
[82375.558373] #PF: supervisor read access in kernel mode
[82375.558391] #PF: error_code(0x0000) - not-present page
[82375.558408] PGD 0 P4D 0
[82375.558421] Oops: Oops: 0000 [#1] SMP NOPTI
<snip>
[82375.558516] RIP: 0010:idpf_get_rxfh+0x108/0x150 [idpf]
[82375.558786] Call Trace:
[82375.558793] <TASK>
[82375.558804] rss_prepare.isra.0+0x187/0x2a0
[82375.558827] rss_prepare_data+0x3a/0x50
[82375.558845] ethnl_default_doit+0x13d/0x3e0
[82375.558863] genl_family_rcv_msg_doit+0x11f/0x180
[82375.558886] genl_rcv_msg+0x1ad/0x2b0
[82375.558902] ? __pfx_ethnl_default_doit+0x10/0x10
[82375.558920] ? __pfx_genl_rcv_msg+0x10/0x10
[82375.558937] netlink_rcv_skb+0x58/0x100
[82375.558957] genl_rcv+0x2c/0x50
[82375.558971] netlink_unicast+0x289/0x3e0
[82375.558988] netlink_sendmsg+0x215/0x440
[82375.559005] __sys_sendto+0x234/0x240
[82375.559555] __x64_sys_sendto+0x28/0x30
[82375.560068] x64_sys_call+0x1909/0x1da0
[82375.560576] do_syscall_64+0x7a/0xfa0
[82375.561076] ? clear_bhb_loop+0x60/0xb0
[82375.561567] entry_SYSCALL_64_after_hwframe+0x76/0x7e
<snip> |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix reference count leak in bpf_prog_test_run_xdp()
syzbot is reporting
unregister_netdevice: waiting for sit0 to become free. Usage count = 2
problem. A debug printk() patch found that a refcount is obtained at
xdp_convert_md_to_buff() from bpf_prog_test_run_xdp().
According to commit ec94670fcb3b ("bpf: Support specifying ingress via
xdp_md context in BPF_PROG_TEST_RUN"), the refcount obtained by
xdp_convert_md_to_buff() will be released by xdp_convert_buff_to_md().
Therefore, we can consider that the error handling path introduced by
commit 1c1949982524 ("bpf: introduce frags support to
bpf_prog_test_run_xdp()") forgot to call xdp_convert_buff_to_md(). |
| In the Linux kernel, the following vulnerability has been resolved:
ublk: fix use-after-free in ublk_partition_scan_work
A race condition exists between the async partition scan work and device
teardown that can lead to a use-after-free of ub->ub_disk:
1. ublk_ctrl_start_dev() schedules partition_scan_work after add_disk()
2. ublk_stop_dev() calls ublk_stop_dev_unlocked() which does:
- del_gendisk(ub->ub_disk)
- ublk_detach_disk() sets ub->ub_disk = NULL
- put_disk() which may free the disk
3. The worker ublk_partition_scan_work() then dereferences ub->ub_disk
leading to UAF
Fix this by using ublk_get_disk()/ublk_put_disk() in the worker to hold
a reference to the disk during the partition scan. The spinlock in
ublk_get_disk() synchronizes with ublk_detach_disk() ensuring the worker
either gets a valid reference or sees NULL and exits early.
Also change flush_work() to cancel_work_sync() to avoid running the
partition scan work unnecessarily when the disk is already detached. |
| In the Linux kernel, the following vulnerability has been resolved:
nvme-tcp: fix NULL pointer dereferences in nvmet_tcp_build_pdu_iovec
Commit efa56305908b ("nvmet-tcp: Fix a kernel panic when host sends an invalid H2C PDU length")
added ttag bounds checking and data_offset
validation in nvmet_tcp_handle_h2c_data_pdu(), but it did not validate
whether the command's data structures (cmd->req.sg and cmd->iov) have
been properly initialized before processing H2C_DATA PDUs.
The nvmet_tcp_build_pdu_iovec() function dereferences these pointers
without NULL checks. This can be triggered by sending H2C_DATA PDU
immediately after the ICREQ/ICRESP handshake, before
sending a CONNECT command or NVMe write command.
Attack vectors that trigger NULL pointer dereferences:
1. H2C_DATA PDU sent before CONNECT → both pointers NULL
2. H2C_DATA PDU for READ command → cmd->req.sg allocated, cmd->iov NULL
3. H2C_DATA PDU for uninitialized command slot → both pointers NULL
The fix validates both cmd->req.sg and cmd->iov before calling
nvmet_tcp_build_pdu_iovec(). Both checks are required because:
- Uninitialized commands: both NULL
- READ commands: cmd->req.sg allocated, cmd->iov NULL
- WRITE commands: both allocated |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: sch_qfq: do not free existing class in qfq_change_class()
Fixes qfq_change_class() error case.
cl->qdisc and cl should only be freed if a new class and qdisc
were allocated, or we risk various UAF. |
| In the Linux kernel, the following vulnerability has been resolved:
macvlan: fix possible UAF in macvlan_forward_source()
Add RCU protection on (struct macvlan_source_entry)->vlan.
Whenever macvlan_hash_del_source() is called, we must clear
entry->vlan pointer before RCU grace period starts.
This allows macvlan_forward_source() to skip over
entries queued for freeing.
Note that macvlan_dev are already RCU protected, as they
are embedded in a standard netdev (netdev_priv(ndev)).
https: //lore.kernel.org/netdev/695fb1e8.050a0220.1c677c.039f.GAE@google.com/T/#u |
| In the Linux kernel, the following vulnerability has been resolved:
lib/buildid: use __kernel_read() for sleepable context
Prevent a "BUG: unable to handle kernel NULL pointer dereference in
filemap_read_folio".
For the sleepable context, convert freader to use __kernel_read() instead
of direct page cache access via read_cache_folio(). This simplifies the
faultable code path by using the standard kernel file reading interface
which handles all the complexity of reading file data.
At the moment we are not changing the code for non-sleepable context which
uses filemap_get_folio() and only succeeds if the target folios are
already in memory and up-to-date. The reason is to keep the patch simple
and easier to backport to stable kernels.
Syzbot repro does not crash the kernel anymore and the selftests run
successfully.
In the follow up we will make __kernel_read() with IOCB_NOWAIT work for
non-sleepable contexts. In addition, I would like to replace the
secretmem check with a more generic approach and will add fstest for the
buildid code. |
| In the Linux kernel, the following vulnerability has been resolved:
block: zero non-PI portion of auto integrity buffer
The auto-generated integrity buffer for writes needs to be fully
initialized before being passed to the underlying block device,
otherwise the uninitialized memory can be read back by userspace or
anyone with physical access to the storage device. If protection
information is generated, that portion of the integrity buffer is
already initialized. The integrity data is also zeroed if PI generation
is disabled via sysfs or the PI tuple size is 0. However, this misses
the case where PI is generated and the PI tuple size is nonzero, but the
metadata size is larger than the PI tuple. In this case, the remainder
("opaque") of the metadata is left uninitialized.
Generalize the BLK_INTEGRITY_CSUM_NONE check to cover any case when the
metadata is larger than just the PI tuple. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/vmwgfx: Fix KMS with 3D on HW version 10
HW version 10 does not have GB Surfaces so there is no backing buffer for
surface backed FBs. This would result in a nullptr dereference and crash
the driver causing a black screen. |
| In the Linux kernel, the following vulnerability has been resolved:
xhci: sideband: don't dereference freed ring when removing sideband endpoint
xhci_sideband_remove_endpoint() incorrecly assumes that the endpoint is
running and has a valid transfer ring.
Lianqin reported a crash during suspend/wake-up stress testing, and
found the cause to be dereferencing a non-existing transfer ring
'ep->ring' during xhci_sideband_remove_endpoint().
The endpoint and its ring may be in unknown state if this function
is called after xHCI was reinitialized in resume (lost power), or if
device is being re-enumerated, disconnected or endpoint already dropped.
Fix this by both removing unnecessary ring access, and by checking
ep->ring exists before dereferencing it. Also make sure endpoint is
running before attempting to stop it.
Remove the xhci_initialize_ring_info() call during sideband endpoint
removal as is it only initializes ring structure enqueue, dequeue and
cycle state values to their starting values without changing actual
hardware enqueue, dequeue and cycle state. Leaving them out of sync
is worse than leaving it as it is. The endpoint will get freed in after
this in most usecases.
If the (audio) class driver want's to reuse the endpoint after offload
then it is up to the class driver to ensure endpoint is properly set up. |